Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG

脑电图 卷积神经网络 人工智能 混淆矩阵 计算机科学 注意缺陷多动障碍 模式识别(心理学) 特征(语言学) 特征提取 深度学习 任务(项目管理) 人工神经网络 听力学 心理学 医学 精神科 哲学 经济 管理 语言学
作者
Majid Moghaddari,‪Mina Zolfy Lighvan,Sebelan Danishvar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:197: 105738-105738 被引量:99
标识
DOI:10.1016/j.cmpb.2020.105738
摘要

Attention-Deficit/Hyperactivity Disorder (ADHD) is a chronic behavioral disorder in children. Children with ADHD face many difficulties in maintaining their concentration and controlling their behaviors. Early diagnosis of this disorder is one of the most important challenges in its control and treatment. No definitive expert method has been found to detect this disorder early. Our goal in this study is to develop an assistive tool for physicians to recognize ADHD children from healthy children using electroencephalography (EEG) based on a continuous mental task. We used EEG signals recorded from 31 ADHD children and 30 healthy children. In this study, we developed a deep learning model using a convolutional neural network that have had significant performance in image processing fields. For this purpose, we first preprocessed EEG signals to eliminate noise and artifacts. Then we segmented preprocessed samples into more samples. We extracted the theta, alpha, beta, and gamma frequency bands from each segmented sample and formed a color RGB image with three channels. Eventually, we imported the resulting images into a 13-layer convolutional neural network for feature extraction and classification. The proposed model was evaluated by 5-fold cross validation for train, evaluation, and test data and achieved an average accuracy of 99.06%, 97.81%, 97.47% for segmented samples. The average accuracy for subject-based test samples was 98.48%. Also, the performance of the model was evaluated using the confusion matrix with precision, recall, and f1-score metrics. The results of these metrics also confirmed the outstanding performance of the model. The accuracy, precision, recall, and f1-score of our model were better than all previous works for diagnosing ADHD in children. Based on these prominent and reliable results, this technique can be used as an assistive tool for the physicians in the early diagnosis of ADHD in children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36456657应助鲤鱼采纳,获得10
刚刚
刚刚
1秒前
2秒前
连冷安发布了新的文献求助10
2秒前
shfgref完成签到,获得积分10
3秒前
3秒前
小胖发布了新的文献求助10
3秒前
乐乐应助Lixian采纳,获得10
4秒前
yy发布了新的文献求助10
4秒前
5秒前
meiguang完成签到,获得积分10
5秒前
尹冰露完成签到,获得积分10
6秒前
6秒前
风和日li完成签到,获得积分0
6秒前
赘婿应助天上人间采纳,获得10
7秒前
7秒前
7秒前
王其超完成签到,获得积分10
7秒前
香蕉觅云应助合适的笑白采纳,获得10
8秒前
8秒前
冰留完成签到 ,获得积分10
8秒前
cebr发布了新的文献求助10
9秒前
柯柯完成签到,获得积分10
10秒前
chen完成签到,获得积分10
10秒前
赟yun完成签到,获得积分0
10秒前
10秒前
贺儿完成签到 ,获得积分10
11秒前
12秒前
Jasen发布了新的文献求助10
12秒前
独特乘云发布了新的文献求助10
12秒前
kk发布了新的文献求助10
13秒前
大个应助wisteety采纳,获得10
14秒前
番茄完成签到,获得积分10
14秒前
14秒前
zzzlk发布了新的文献求助10
14秒前
SciGPT应助hx采纳,获得10
14秒前
15秒前
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053