Deep learning techniques for automatic butterfly segmentation in ecological images

蝴蝶 分割 人工智能 计算机科学 图像分割 鉴定(生物学) 深度学习 市场细分 自编码 计算机视觉 模式识别(心理学) 机器学习 生态学 生物 营销 业务
作者
Hui Tang,Bin Wang,Xin Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:178: 105739-105739 被引量:28
标识
DOI:10.1016/j.compag.2020.105739
摘要

Automatic identification of butterfly species has attracted more and more attention due to the increasing demand for the accuracy and timeliness of butterfly species identification. Since the butterfly images we captured are usually ecological images, which not only have butterflies but also contain many irrelevant objects, such as leaves, flowers and other complex backgrounds. Therefore, segmenting butterflies from their ecological images is an issue that needs to be addressed prior to the tasks of identification and the segmentation quality directly affects the identification effect. However, the huge differences in butterflies, and the complexity of the natural environment make it very challenging to accurately segment butterflies from ecological images. Deep learning based methods are more promising for butterfly ecological image segmentation than traditional methods because they have powerful feature learning and representation ability. However, butterfly segmentation is still challenging when complex background interference occurs in images. To address this issue, we propose a dilated encoder network to capture more high-level features and get high-resolution output, which is both lightweight and accurate for automatic butterfly ecological image segmentation. In addition, we adopt the dice coefficient loss function to better balance the butterfly and non-butterfly regions. Experimental results on the public Leeds Butterfly dataset demonstrate that our method outperforms the state-of-the-art deep learning based image segmentation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无尘泪发布了新的文献求助20
1秒前
Jankin发布了新的文献求助10
2秒前
科研通AI2S应助小宋爱睡觉采纳,获得10
2秒前
千跃应助小宋爱睡觉采纳,获得10
2秒前
krzysku完成签到,获得积分10
2秒前
Owen应助yhw采纳,获得10
4秒前
小蘑菇应助李二牛采纳,获得10
5秒前
乐乐应助酷酷的蚂蚁采纳,获得10
5秒前
yxj关注了科研通微信公众号
6秒前
7秒前
简单又槐完成签到,获得积分10
7秒前
羞涩的枫叶完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
utopia完成签到,获得积分10
11秒前
11秒前
11秒前
威威发布了新的文献求助10
12秒前
12秒前
罗亚亚发布了新的文献求助10
13秒前
搜集达人应助万万没想到采纳,获得10
14秒前
哈哈完成签到,获得积分10
15秒前
15秒前
研友_VZG7GZ应助彳亍采纳,获得10
15秒前
16秒前
优雅静珊发布了新的文献求助30
16秒前
oiioi发布了新的文献求助10
16秒前
研友_VZG7GZ应助仁爱绝义采纳,获得10
16秒前
冷静太君发布了新的文献求助10
17秒前
昏睡的蟠桃发布了新的文献求助150
17秒前
18秒前
18秒前
19秒前
19秒前
李逍遥完成签到,获得积分10
19秒前
20秒前
jerry发布了新的文献求助10
20秒前
mumu0822发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3516009
关于积分的说明 11180382
捐赠科研通 3251075
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875988
科研通“疑难数据库(出版商)”最低求助积分说明 805209