Deep learning techniques for automatic butterfly segmentation in ecological images

蝴蝶 分割 人工智能 计算机科学 图像分割 鉴定(生物学) 深度学习 市场细分 自编码 计算机视觉 模式识别(心理学) 机器学习 生态学 生物 营销 业务
作者
Hui Tang,Bin Wang,Xin Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:178: 105739-105739 被引量:28
标识
DOI:10.1016/j.compag.2020.105739
摘要

Automatic identification of butterfly species has attracted more and more attention due to the increasing demand for the accuracy and timeliness of butterfly species identification. Since the butterfly images we captured are usually ecological images, which not only have butterflies but also contain many irrelevant objects, such as leaves, flowers and other complex backgrounds. Therefore, segmenting butterflies from their ecological images is an issue that needs to be addressed prior to the tasks of identification and the segmentation quality directly affects the identification effect. However, the huge differences in butterflies, and the complexity of the natural environment make it very challenging to accurately segment butterflies from ecological images. Deep learning based methods are more promising for butterfly ecological image segmentation than traditional methods because they have powerful feature learning and representation ability. However, butterfly segmentation is still challenging when complex background interference occurs in images. To address this issue, we propose a dilated encoder network to capture more high-level features and get high-resolution output, which is both lightweight and accurate for automatic butterfly ecological image segmentation. In addition, we adopt the dice coefficient loss function to better balance the butterfly and non-butterfly regions. Experimental results on the public Leeds Butterfly dataset demonstrate that our method outperforms the state-of-the-art deep learning based image segmentation approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
墨林完成签到,获得积分20
刚刚
刚刚
科研通AI2S应助yiguaer采纳,获得10
1秒前
小马甲应助Rickstein采纳,获得10
1秒前
故事的小黄花完成签到,获得积分10
1秒前
上官若男应助jzt12138采纳,获得10
1秒前
2秒前
自觉的帽子完成签到,获得积分10
2秒前
滕祥应助bin采纳,获得100
2秒前
2秒前
3秒前
rui发布了新的文献求助10
3秒前
3秒前
zhb发布了新的文献求助10
4秒前
桐桐应助好名字采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
lulu发布了新的文献求助10
7秒前
7秒前
韩豆乐发布了新的文献求助10
8秒前
南歌子完成签到 ,获得积分10
8秒前
9秒前
10秒前
无花果应助NOVEICE采纳,获得30
10秒前
10秒前
星落枝头发布了新的文献求助10
11秒前
平常心完成签到 ,获得积分10
11秒前
慕青应助Leon Lai采纳,获得10
12秒前
温暖的若之完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
ye发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
领导范儿应助LIUmm采纳,获得10
13秒前
BowieHuang应助liyiliyi117采纳,获得10
13秒前
泡芙完成签到,获得积分20
13秒前
费1发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667