Deep learning techniques for automatic butterfly segmentation in ecological images

蝴蝶 分割 人工智能 计算机科学 图像分割 鉴定(生物学) 深度学习 市场细分 自编码 计算机视觉 模式识别(心理学) 机器学习 生态学 生物 营销 业务
作者
Hui Tang,Bin Wang,Xin Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:178: 105739-105739 被引量:28
标识
DOI:10.1016/j.compag.2020.105739
摘要

Automatic identification of butterfly species has attracted more and more attention due to the increasing demand for the accuracy and timeliness of butterfly species identification. Since the butterfly images we captured are usually ecological images, which not only have butterflies but also contain many irrelevant objects, such as leaves, flowers and other complex backgrounds. Therefore, segmenting butterflies from their ecological images is an issue that needs to be addressed prior to the tasks of identification and the segmentation quality directly affects the identification effect. However, the huge differences in butterflies, and the complexity of the natural environment make it very challenging to accurately segment butterflies from ecological images. Deep learning based methods are more promising for butterfly ecological image segmentation than traditional methods because they have powerful feature learning and representation ability. However, butterfly segmentation is still challenging when complex background interference occurs in images. To address this issue, we propose a dilated encoder network to capture more high-level features and get high-resolution output, which is both lightweight and accurate for automatic butterfly ecological image segmentation. In addition, we adopt the dice coefficient loss function to better balance the butterfly and non-butterfly regions. Experimental results on the public Leeds Butterfly dataset demonstrate that our method outperforms the state-of-the-art deep learning based image segmentation approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如是之人发布了新的文献求助10
刚刚
刚刚
123发布了新的文献求助10
刚刚
Hwchaodoctor完成签到,获得积分10
刚刚
田様应助vince采纳,获得10
刚刚
刚刚
如是之人发布了新的文献求助10
刚刚
如是之人发布了新的文献求助10
刚刚
如是之人发布了新的文献求助10
1秒前
如是之人发布了新的文献求助10
1秒前
1秒前
luckyyhy发布了新的文献求助10
1秒前
1秒前
风雅发布了新的文献求助10
1秒前
传奇3应助一方通行采纳,获得10
1秒前
1秒前
2秒前
羊六七发布了新的文献求助20
2秒前
cr123发布了新的文献求助10
2秒前
杜瑞豪完成签到,获得积分10
2秒前
在水一方应助英勇映波采纳,获得10
3秒前
无限的千琴完成签到,获得积分10
3秒前
shan完成签到,获得积分20
3秒前
昌升完成签到,获得积分20
3秒前
易大师完成签到,获得积分10
3秒前
自由迎曼发布了新的文献求助10
4秒前
4秒前
4秒前
aaaaaa发布了新的文献求助10
5秒前
Y1417完成签到,获得积分20
5秒前
浮游应助妮宝采纳,获得10
5秒前
y1628521397完成签到 ,获得积分10
5秒前
戴昕东发布了新的文献求助10
6秒前
6秒前
sail发布了新的文献求助10
6秒前
顺顺顺顺完成签到,获得积分10
6秒前
科研通AI6应助Linda采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688