Multimodal Ultrasound Imaging in Breast Imaging-Reporting and Data System 4 Breast Lesions: A Prediction Model for Malignancy

医学 乳房成像 逻辑回归 队列 乳腺超声检查 恶性肿瘤 放射科 接收机工作特性 乳腺癌 置信区间 超声波 单变量分析 乳房磁振造影 弹性成像 内科学 乳腺摄影术 多元分析 癌症
作者
Xiao‐Long Li,Feng Lu,An‐Qi Zhu,Dou Du,Yifeng Zhang,Le‐Hang Guo,Liping Sun,Hui‐Xiong Xu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:46 (12): 3188-3199 被引量:14
标识
DOI:10.1016/j.ultrasmedbio.2020.08.003
摘要

Abstract

The purpose of this study was to develop, validate and test a prediction model for discriminating malignant from benign breast lesions using conventional ultrasound (US), US elastography of strain elastography and contrast-enhanced ultrasound (CEUS). The study included 454 patients with breast imaging-reporting and data system (BI-RADS) category 4 breast lesions identified on histologic examinations. Firstly, 228 breast lesions (cohort 1) were analyzed by logistic regression analysis to identify the risk factors, and a breast malignancy prediction model was created. Secondly, the prediction model was validated in cohort 2 (84 patients) and tested in cohort 3 (142 patients) by using analysis of the area under the receiver operating characteristic curve (AUC). Univariate regression indicated that age ≥40 y, taller than wide shape on US, early hyperenhancement on CEUS and enlargement of enhancement area on CEUS were independent risk factors for breast malignancy (all p < 0.05). The logistic regression equation was established as follows: p = 1/1+Exp∑[–5.066 + 3.125 x (if age ≥40 y) + 1.943 x (if taller than wide shape) + 1.479 x (if early hyperenhancement) + 4.167 x (if enlargement of enhancement area). The prediction model showed good discrimination performance with an AUC of 0.967 in cohort 1, 0.948 in cohort 2 and 0.920 in cohort 3. By using the prediction model to selectively downgrade category 4a lesions, the re-rated BI-RADS yield an AUC of 0.880 (95% confidence interval [CI], 0.794–0.965) in cohort 2 and 0.870 (95% CI, 0.801–0.939) in cohort 3. The specificity increased from 0.0% (0/35) to 80.0% (28/35) without loss of sensitivity (from 100.0% to 95.9%, p = 0.153) in cohort 2. Similarly, the specificity increased from 0.0% (0/58) to 77.6% (45/58) without loss of sensitivity (from 100.0% to 96.4%, p = 0.081) in cohort 3. Multimodal US showed good diagnostic performance in predicting breast malignancy of BI-RADS category 4 lesions. Although the loss of sensitivity was existing, the addition of multimodal US to US BI-RADS could improve the specificity in BI-RADS category 4 lesions, which reduced unnecessary biopsies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕君完成签到,获得积分10
刚刚
anan应助竹林风箫采纳,获得10
1秒前
1秒前
依然小爽完成签到,获得积分10
1秒前
2秒前
Cy完成签到,获得积分10
2秒前
乐观的海发布了新的文献求助10
3秒前
NexusExplorer应助勤劳寒烟采纳,获得10
4秒前
4秒前
YUMMY发布了新的文献求助10
4秒前
5秒前
nancylan应助CooLIT采纳,获得10
5秒前
5秒前
orixero应助糟糕的秋白采纳,获得10
5秒前
GG完成签到,获得积分10
6秒前
6秒前
斯文白梦完成签到,获得积分10
6秒前
yy发布了新的文献求助10
7秒前
清心淡如水完成签到 ,获得积分10
7秒前
7秒前
8秒前
晚风发布了新的文献求助10
8秒前
wlscj给舒桐啊的求助进行了留言
8秒前
dyuguo3完成签到 ,获得积分10
8秒前
宥沐发布了新的文献求助10
9秒前
共享精神应助lyb采纳,获得10
9秒前
喳喳瑶完成签到,获得积分10
9秒前
orixero应助iebix采纳,获得10
12秒前
12秒前
12秒前
12秒前
行星一只兔完成签到 ,获得积分10
13秒前
13秒前
13秒前
斯文白梦发布了新的文献求助80
13秒前
ding应助开心的雁卉采纳,获得10
13秒前
米米米发布了新的文献求助10
13秒前
lzz完成签到,获得积分10
14秒前
飞快的大树完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923