清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal Ultrasound Imaging in Breast Imaging-Reporting and Data System 4 Breast Lesions: A Prediction Model for Malignancy

医学 乳房成像 逻辑回归 队列 乳腺超声检查 恶性肿瘤 放射科 接收机工作特性 乳腺癌 置信区间 超声波 单变量分析 乳房磁振造影 弹性成像 内科学 乳腺摄影术 多元分析 癌症
作者
Xiao‐Long Li,Feng Lu,An‐Qi Zhu,Dou Du,Yifeng Zhang,Le‐Hang Guo,Liping Sun,Hui‐Xiong Xu
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:46 (12): 3188-3199 被引量:14
标识
DOI:10.1016/j.ultrasmedbio.2020.08.003
摘要

Abstract

The purpose of this study was to develop, validate and test a prediction model for discriminating malignant from benign breast lesions using conventional ultrasound (US), US elastography of strain elastography and contrast-enhanced ultrasound (CEUS). The study included 454 patients with breast imaging-reporting and data system (BI-RADS) category 4 breast lesions identified on histologic examinations. Firstly, 228 breast lesions (cohort 1) were analyzed by logistic regression analysis to identify the risk factors, and a breast malignancy prediction model was created. Secondly, the prediction model was validated in cohort 2 (84 patients) and tested in cohort 3 (142 patients) by using analysis of the area under the receiver operating characteristic curve (AUC). Univariate regression indicated that age ≥40 y, taller than wide shape on US, early hyperenhancement on CEUS and enlargement of enhancement area on CEUS were independent risk factors for breast malignancy (all p < 0.05). The logistic regression equation was established as follows: p = 1/1+Exp∑[–5.066 + 3.125 x (if age ≥40 y) + 1.943 x (if taller than wide shape) + 1.479 x (if early hyperenhancement) + 4.167 x (if enlargement of enhancement area). The prediction model showed good discrimination performance with an AUC of 0.967 in cohort 1, 0.948 in cohort 2 and 0.920 in cohort 3. By using the prediction model to selectively downgrade category 4a lesions, the re-rated BI-RADS yield an AUC of 0.880 (95% confidence interval [CI], 0.794–0.965) in cohort 2 and 0.870 (95% CI, 0.801–0.939) in cohort 3. The specificity increased from 0.0% (0/35) to 80.0% (28/35) without loss of sensitivity (from 100.0% to 95.9%, p = 0.153) in cohort 2. Similarly, the specificity increased from 0.0% (0/58) to 77.6% (45/58) without loss of sensitivity (from 100.0% to 96.4%, p = 0.081) in cohort 3. Multimodal US showed good diagnostic performance in predicting breast malignancy of BI-RADS category 4 lesions. Although the loss of sensitivity was existing, the addition of multimodal US to US BI-RADS could improve the specificity in BI-RADS category 4 lesions, which reduced unnecessary biopsies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wakawaka完成签到 ,获得积分10
10秒前
38秒前
莨菪发布了新的文献求助10
39秒前
tt完成签到,获得积分10
48秒前
斯文的清涟完成签到,获得积分10
1分钟前
1分钟前
盈盈发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
2分钟前
2分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
3分钟前
Penny完成签到,获得积分10
3分钟前
Penny发布了新的文献求助10
3分钟前
盈盈发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160