Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
he完成签到,获得积分10
刚刚
17self发布了新的文献求助10
1秒前
可爱的函函应助yaooo采纳,获得10
1秒前
爱因斯宣发布了新的文献求助10
1秒前
wocala发布了新的文献求助10
2秒前
3秒前
4秒前
呆萌的世德完成签到,获得积分10
4秒前
甜甜的豆芽完成签到 ,获得积分10
5秒前
寒江孤影完成签到,获得积分10
5秒前
SciGPT应助有机分子笼采纳,获得10
5秒前
zhu完成签到 ,获得积分10
6秒前
你猜发布了新的文献求助10
6秒前
6秒前
陈曦发布了新的文献求助10
7秒前
7秒前
11完成签到 ,获得积分10
7秒前
开心超人完成签到,获得积分10
7秒前
无花果应助杨杨爱科研采纳,获得10
8秒前
清茶旧友完成签到,获得积分10
8秒前
8秒前
紫色de泡沫完成签到,获得积分10
8秒前
孙福禄应助wfunny采纳,获得10
9秒前
时闲应助z掌握一下采纳,获得10
9秒前
wocala完成签到,获得积分10
10秒前
koko完成签到,获得积分10
10秒前
吕奎完成签到,获得积分10
10秒前
11秒前
fzzzzlucy应助T拐拐采纳,获得10
11秒前
伏城完成签到 ,获得积分10
11秒前
SYLH应助leodu采纳,获得10
11秒前
懂事梨完成签到,获得积分20
11秒前
17self完成签到,获得积分10
12秒前
上官若男应助mm采纳,获得10
12秒前
12秒前
书虫发布了新的文献求助10
14秒前
14秒前
阉太狼完成签到,获得积分10
15秒前
Gdhdjxbbx完成签到,获得积分10
15秒前
小蘑菇应助CHBW采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650