Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助sfsfdfgr采纳,获得10
刚刚
lf发布了新的文献求助10
刚刚
大模型应助if采纳,获得10
刚刚
科研通AI6应助David采纳,获得10
刚刚
刚刚
追尾的猫发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
何ry发布了新的文献求助10
2秒前
ding应助冬无青山采纳,获得10
2秒前
孟风尘发布了新的文献求助10
3秒前
leo发布了新的文献求助10
3秒前
3秒前
勤恳的糖豆完成签到,获得积分10
3秒前
3秒前
彭于晏应助罗明芳采纳,获得10
4秒前
zhangyu发布了新的文献求助10
4秒前
彭于晏应助怀民已就寝采纳,获得10
5秒前
于晓雅完成签到,获得积分10
5秒前
黄晴发布了新的文献求助10
6秒前
小薇完成签到,获得积分10
6秒前
6秒前
6秒前
dalin发布了新的文献求助10
7秒前
领导范儿应助linade采纳,获得10
7秒前
7秒前
7秒前
8秒前
虚幻白桃完成签到,获得积分10
8秒前
FashionBoy应助sfx采纳,获得10
9秒前
DJY发布了新的文献求助10
9秒前
9秒前
9秒前
fjfjfj完成签到,获得积分10
9秒前
9秒前
jianglan完成签到,获得积分10
10秒前
11秒前
randi完成签到,获得积分10
12秒前
12秒前
cyw完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012831
求助须知:如何正确求助?哪些是违规求助? 4253941
关于积分的说明 13256670
捐赠科研通 4056949
什么是DOI,文献DOI怎么找? 2219007
邀请新用户注册赠送积分活动 1228513
关于科研通互助平台的介绍 1151089