Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgg发布了新的文献求助50
刚刚
思源应助求求了采纳,获得10
刚刚
Dita发布了新的文献求助10
1秒前
ei发布了新的文献求助10
1秒前
光亮觅云发布了新的文献求助30
1秒前
浮游应助张亚博采纳,获得10
1秒前
深情安青应助张亚博采纳,获得10
1秒前
2秒前
chy发布了新的文献求助10
2秒前
2秒前
含蓄的小熊猫完成签到 ,获得积分10
3秒前
YXYYXYYXY完成签到,获得积分10
3秒前
5秒前
学术的刘发布了新的文献求助10
5秒前
wdwd完成签到,获得积分10
6秒前
杨哈哈哈完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助风清扬采纳,获得30
7秒前
New完成签到,获得积分10
7秒前
8秒前
WJL完成签到 ,获得积分10
8秒前
天才Kitty猫完成签到,获得积分10
9秒前
baiseqiutian发布了新的文献求助10
9秒前
Havoc完成签到,获得积分10
10秒前
Ting发布了新的文献求助10
10秒前
XU完成签到,获得积分10
10秒前
苏东方发布了新的文献求助10
10秒前
11秒前
ddd发布了新的文献求助10
12秒前
XZY完成签到,获得积分10
12秒前
12秒前
隐形曼青应助贝肯尼采纳,获得10
13秒前
cyh应助大胆的雪糕采纳,获得10
13秒前
科研通AI6应助小风吹着采纳,获得10
14秒前
14秒前
Wxc发布了新的文献求助10
15秒前
Dita完成签到,获得积分10
15秒前
15秒前
失眠的诗蕊应助鲤鱼荔枝采纳,获得20
16秒前
大个应助苏栀采纳,获得10
16秒前
科研通AI6应助小鑫采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004