Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴舒发布了新的文献求助10
1秒前
善学以致用应助荔枝面采纳,获得10
1秒前
Rena完成签到,获得积分10
1秒前
无极微光应助旦皋采纳,获得20
3秒前
天天快乐应助随风采纳,获得10
3秒前
爆米花应助银玥采纳,获得10
3秒前
FashionBoy应助hahahahaaaa采纳,获得10
3秒前
4秒前
所所应助旅人采纳,获得10
4秒前
度玛发布了新的文献求助10
4秒前
SnownS发布了新的文献求助10
5秒前
smh发布了新的文献求助10
5秒前
闪闪茉莉发布了新的文献求助10
5秒前
王卫完成签到,获得积分10
6秒前
yema发布了新的文献求助10
7秒前
科研通AI6应助ddak采纳,获得10
8秒前
9秒前
luo发布了新的文献求助10
9秒前
小二郎应助实验一定顺采纳,获得30
9秒前
9秒前
李爱国应助第七个星球采纳,获得10
9秒前
ttsong2完成签到,获得积分10
10秒前
10秒前
11秒前
共享精神应助典雅的俊驰采纳,获得10
11秒前
脑洞疼应助zik采纳,获得10
12秒前
13秒前
14秒前
银玥发布了新的文献求助10
15秒前
酸菜完成签到,获得积分10
15秒前
15秒前
Gun2022完成签到,获得积分10
15秒前
椰子发布了新的文献求助10
16秒前
大黄发布了新的文献求助10
16秒前
充电宝应助如意蚂蚁采纳,获得10
16秒前
kkk发布了新的文献求助20
16秒前
科研通AI6应助hhhg采纳,获得20
16秒前
fanfan完成签到,获得积分10
17秒前
zgl0806发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487