Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CH完成签到 ,获得积分10
刚刚
xiuxiu_27发布了新的文献求助10
1秒前
April发布了新的文献求助10
1秒前
打打应助核桃采纳,获得10
1秒前
1秒前
elena发布了新的文献求助10
1秒前
现代的战斗机完成签到,获得积分10
1秒前
刘星星发布了新的文献求助10
2秒前
萧秋灵完成签到,获得积分10
2秒前
2秒前
3秒前
YaoX完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
YE发布了新的文献求助10
4秒前
4秒前
5秒前
张肥肥完成签到 ,获得积分20
5秒前
明亮的斩关注了科研通微信公众号
5秒前
科研通AI5应助搞怪的人龙采纳,获得10
5秒前
6秒前
xiuxiu_27完成签到 ,获得积分10
6秒前
李健应助qym采纳,获得10
7秒前
风趣的爆米花完成签到,获得积分20
7秒前
韭菜发布了新的文献求助10
7秒前
7秒前
7秒前
yzxzdm完成签到 ,获得积分10
8秒前
小破仁666发布了新的文献求助10
8秒前
8秒前
英姑应助优秀的逊采纳,获得10
9秒前
ccc完成签到,获得积分20
9秒前
9秒前
9秒前
小二郎应助诗谙采纳,获得10
9秒前
9秒前
9秒前
圣晟胜发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740