Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
友好元槐完成签到,获得积分10
3秒前
蛋挞发布了新的文献求助10
4秒前
在水一方应助红糖发糕采纳,获得10
4秒前
隐形曼青应助tttt采纳,获得10
4秒前
orixero应助喃喃采纳,获得10
5秒前
luster发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
懵懂小尉完成签到,获得积分10
7秒前
nnnick完成签到,获得积分0
8秒前
土豆蔡蔡完成签到,获得积分10
8秒前
上官沅完成签到,获得积分10
10秒前
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
小乔应助太阳当空照采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
欢呼乘风应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
longhang应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
优雅小霜发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
sleey6应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646513
求助须知:如何正确求助?哪些是违规求助? 4771610
关于积分的说明 15035503
捐赠科研通 4805306
什么是DOI,文献DOI怎么找? 2569599
邀请新用户注册赠送积分活动 1526597
关于科研通互助平台的介绍 1485858