已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助高挑的梦芝采纳,获得10
3秒前
zhangyafei完成签到,获得积分10
3秒前
caoyy发布了新的文献求助10
4秒前
psy完成签到,获得积分10
5秒前
Lucas应助呼斯冷采纳,获得10
5秒前
6秒前
jimskylxk发布了新的文献求助10
6秒前
研友_Good Hope完成签到,获得积分10
7秒前
7秒前
王先生发布了新的文献求助10
7秒前
刘三哥完成签到 ,获得积分10
9秒前
背后的幻巧完成签到,获得积分10
9秒前
msp发布了新的文献求助10
11秒前
11秒前
哈哈哈完成签到 ,获得积分10
12秒前
爆米花应助jimskylxk采纳,获得10
12秒前
大模型应助柍踏采纳,获得10
13秒前
乐乐应助April采纳,获得10
15秒前
15秒前
岂曰无衣完成签到 ,获得积分10
16秒前
李健的小迷弟应助哦哦哦采纳,获得10
18秒前
呼斯冷发布了新的文献求助10
19秒前
CipherSage应助msp采纳,获得10
20秒前
20秒前
领导范儿应助小明采纳,获得10
26秒前
陆一完成签到 ,获得积分10
26秒前
xu发布了新的文献求助10
27秒前
大个应助柍踏采纳,获得10
28秒前
科研通AI6.1应助王先生采纳,获得10
29秒前
30秒前
32秒前
32秒前
rwq完成签到 ,获得积分10
33秒前
哦哦哦发布了新的文献求助10
34秒前
wab完成签到,获得积分0
35秒前
jimskylxk发布了新的文献求助10
35秒前
研友_VZG7GZ应助柍踏采纳,获得10
37秒前
bobokan应助义气翩跹采纳,获得10
37秒前
文慧发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958