亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
viciz发布了新的文献求助10
2秒前
2秒前
ding应助drr采纳,获得10
5秒前
7秒前
23秒前
41秒前
彭于晏应助thousandlong采纳,获得10
44秒前
50秒前
50秒前
51秒前
thousandlong发布了新的文献求助10
55秒前
wang发布了新的文献求助10
57秒前
59秒前
1分钟前
田様应助viciz采纳,获得10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
viciz完成签到,获得积分10
1分钟前
1分钟前
drr发布了新的文献求助10
1分钟前
WQY发布了新的文献求助10
1分钟前
1分钟前
2分钟前
WQY完成签到,获得积分10
2分钟前
24完成签到 ,获得积分10
2分钟前
打工不可能完成签到,获得积分10
2分钟前
沧海云完成签到 ,获得积分10
2分钟前
Tuesday完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
efoge发布了新的文献求助10
2分钟前
小肉球完成签到 ,获得积分10
2分钟前
嗯哼应助mmyhn采纳,获得10
2分钟前
2分钟前
善学以致用应助spearbog采纳,获得10
3分钟前
顾矜应助efoge采纳,获得10
3分钟前
susu完成签到 ,获得积分10
3分钟前
wxyinhefeng完成签到 ,获得积分10
3分钟前
归海梦岚完成签到,获得积分0
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056430
求助须知:如何正确求助?哪些是违规求助? 2713056
关于积分的说明 7434409
捐赠科研通 2358078
什么是DOI,文献DOI怎么找? 1249228
科研通“疑难数据库(出版商)”最低求助积分说明 606981
版权声明 596195