Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7ohnny完成签到,获得积分10
刚刚
千早爱音发布了新的文献求助10
刚刚
刚刚
Lynth_雪鸮发布了新的文献求助10
1秒前
1秒前
polki完成签到 ,获得积分10
2秒前
2秒前
JKH完成签到,获得积分10
3秒前
3秒前
泡泡泡芙发布了新的文献求助10
4秒前
zxd发布了新的文献求助10
4秒前
4秒前
嘿嘿呼发布了新的文献求助10
4秒前
Wlt完成签到,获得积分10
5秒前
研友_VZG7GZ应助李昕123采纳,获得10
6秒前
6秒前
蒋卉梅发布了新的文献求助10
6秒前
领导范儿应助甜甜的枫采纳,获得10
7秒前
千早爱音完成签到,获得积分10
7秒前
酷波er应助chc采纳,获得10
8秒前
NexusExplorer应助发的不太好采纳,获得10
8秒前
orixero应助冷彬采纳,获得10
9秒前
9秒前
yu发布了新的文献求助10
9秒前
常芹发布了新的文献求助10
10秒前
天天快乐应助嘿嘿呼采纳,获得10
11秒前
万能图书馆应助钱钱采纳,获得10
12秒前
机智毛豆发布了新的文献求助10
13秒前
季裕完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
WW发布了新的文献求助10
14秒前
15秒前
zxd完成签到,获得积分10
15秒前
Lynth_雪鸮发布了新的文献求助10
15秒前
收费完成签到 ,获得积分10
16秒前
orixero应助qq采纳,获得10
17秒前
Curiousrss完成签到,获得积分10
17秒前
李爱国应助ChuangyangLi采纳,获得10
17秒前
17秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672