Central and peripheral vision for scene recognition: A neurocomputational modeling exploration

周边视觉 分类 人工智能 计算机科学 计算机视觉 外围设备 深度学习 场景统计 过程(计算) 模式识别(心理学) 神经科学 心理学 感知 操作系统
作者
Panqu Wang,Garrison W. Cottrell
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:17 (4): 9-9 被引量:35
标识
DOI:10.1167/17.4.9
摘要

What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model ("The Deep Model," or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MJH123456完成签到 ,获得积分10
1秒前
景妙海完成签到 ,获得积分10
1秒前
hrzmlily完成签到,获得积分10
2秒前
苏瑞完成签到,获得积分10
2秒前
3秒前
咖可乐完成签到,获得积分10
3秒前
勤qin发布了新的文献求助10
4秒前
4秒前
gloval发布了新的文献求助10
4秒前
谦让的萤完成签到 ,获得积分10
5秒前
SG完成签到,获得积分10
5秒前
6秒前
6秒前
医疗搜救犬完成签到 ,获得积分10
6秒前
体贴西装完成签到 ,获得积分10
6秒前
LZH发布了新的文献求助10
6秒前
7秒前
muyassar完成签到,获得积分10
8秒前
Canonical_SMILES完成签到 ,获得积分10
8秒前
英姑应助呆萌的青烟采纳,获得10
8秒前
冷酷的寒天完成签到,获得积分20
9秒前
老猫完成签到,获得积分10
9秒前
晚霞完成签到 ,获得积分10
10秒前
Jasper应助芷莯采纳,获得10
10秒前
zxt发布了新的文献求助10
10秒前
10秒前
充电宝应助小Yang采纳,获得10
12秒前
酷波er应助LZH采纳,获得10
12秒前
12秒前
木木完成签到,获得积分10
12秒前
12秒前
奥利给完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
17秒前
WZH完成签到,获得积分10
17秒前
小黄瓜896发布了新的文献求助10
17秒前
哈哈哈哈哈哈完成签到,获得积分10
18秒前
王青青完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806