Privacy-preserving data mining for open government data from heterogeneous sources

数据匿名化 标识符 打开数据 计算机科学 开放的政府 政府(语言学) 数据共享 联动装置(软件) 宪章 数据科学 数据挖掘 信息隐私 计算机安全 万维网 医学 历史 语言学 哲学 生物化学 替代医学 化学 考古 病理 基因 程序设计语言
作者
Jae‐Seong Lee,Seung‐pyo Jun
出处
期刊:Government Information Quarterly [Elsevier]
卷期号:38 (1): 101544-101544 被引量:33
标识
DOI:10.1016/j.giq.2020.101544
摘要

Open data is a global movement with the potential to generate significant social and economic benefits. Policies on open government data (OGD) inspire the development of new and innovative services that government agencies may lack. The International Open Data Charter adequately describes the importance of data mining. Governments that have signed this charter should focus on the following areas—(i) data mining, (ii) linkage, and (iii) in-depth analysis, i.e., distribution of open data that is freely accessible for elaborate analysis using machine reading. However, a series of practical difficulties is observed in connection with the data mining of OGD for in-depth analysis. First, most OGD do not have identifiers to prevent privacy disclosure. Second, owing to the nature of siloed data, the data sharing and collection methods vary with respect to heterogeneous OGD, and administrative or institutional barriers need to be overcome. This has created a demand for a novel technical solution that applies micro-aggregation and distance-based record linkage to address the aforementioned issues. Thus, in this study, a method capable of integrating two or more de-identified OGDs into one dataset to enable OGD data mining is proposed. In addition, the proposed method allows users to adjust the privacy threshold level to determine an appropriate balance between privacy disclosure risk and data utility. The effectiveness of the method is evaluated in terms of several metrics via extensive experimentation. This study emphasizes the importance of the research on efficient utilization of already-published OGDs, which has been relatively neglected in the past. Further, it broadens the research area for privacy-preserving data mining by proposing a method capable of mining heterogeneous data even in the absence of identifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助青林采纳,获得10
1秒前
冷静傲丝完成签到 ,获得积分10
2秒前
2秒前
小小花完成签到,获得积分10
2秒前
2秒前
橙子完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
5秒前
陈昇发布了新的文献求助10
6秒前
香蕉茹妖完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
周星星完成签到,获得积分10
9秒前
嗦了蜜发布了新的文献求助10
9秒前
大马哥完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
追寻凌青给追寻凌青的求助进行了留言
11秒前
ZHIXIANGWENG发布了新的文献求助10
12秒前
勇敢的心发布了新的文献求助10
13秒前
13秒前
我开始找你了完成签到,获得积分10
13秒前
筑梦之鱼完成签到,获得积分10
14秒前
Orange应助怕孤独的鹭洋采纳,获得10
14秒前
林屿溪发布了新的文献求助10
15秒前
15秒前
皮皮发布了新的文献求助10
15秒前
16秒前
请叫我风吹麦浪应助YCW采纳,获得10
16秒前
wanghuan发布了新的文献求助10
17秒前
Leolefroy发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461701
求助须知:如何正确求助?哪些是违规求助? 3055391
关于积分的说明 9047754
捐赠科研通 2745178
什么是DOI,文献DOI怎么找? 1506027
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695411