Fault diagnosis for mechanical system using dynamic Bayesian network

动态贝叶斯网络 贝叶斯网络 断层(地质) 组分(热力学) 计算机科学 可靠性(半导体) 贝叶斯概率 机械系统 数据挖掘 人工智能 量子力学 热力学 物理 地质学 功率(物理) 地震学
作者
Tian Yang Pang,Yu Tian,Bi Feng Song
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1043 (3): 032062-032062
标识
DOI:10.1088/1757-899x/1043/3/032062
摘要

Abstract The present study focuses on the fault diagnosis of mechanical systems. Mechanical systems are considered with interconnected components that work together to achieve a common function or purpose. On the one hand, the fault diagnosis result is affected by strong dependence between each component. One the other hand, diagnostic results may be different at different time slices because of the performance degradation of components when the same fault symptoms are given. To deal with these problems in diagnosis, a dynamic Bayesian network (DBN) model is proposed. First, series and parallel systems are converted to a Bayesian network. And the relationship between components and reliability of the system is expressed by the Bayesian network. Then, the dynamic Bayesian network is established to model the dynamic degradation of components in a system under additional information by using the wear data. The parameters of the model are estimated by historical data. Finally, a case is investigated to verify the proposed model in this study. Fault diagnosis is conducted through a backward analysis of the DBN model proposed, and the weakest component is identified. The dynamic probabilities of the mechanical system are obtained through forwarding analysis of the DBN model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胡振宁完成签到 ,获得积分10
2秒前
3秒前
3秒前
小初发布了新的文献求助10
3秒前
科研通AI6应助霸气的可冥采纳,获得10
3秒前
希望天下0贩的0应助郭翔采纳,获得10
3秒前
直率新柔完成签到 ,获得积分10
3秒前
11111完成签到 ,获得积分10
4秒前
MBL关闭了MBL文献求助
4秒前
wangxiaobin完成签到 ,获得积分10
4秒前
顾矜应助怡然人生采纳,获得10
4秒前
CC完成签到,获得积分10
5秒前
呆一起完成签到,获得积分10
5秒前
5秒前
zls发布了新的文献求助20
6秒前
6秒前
Li完成签到,获得积分10
6秒前
蓝天发布了新的文献求助10
6秒前
6秒前
Hank完成签到,获得积分10
7秒前
白介素-11发布了新的文献求助10
8秒前
LJZ发布了新的文献求助10
8秒前
9秒前
SciGPT应助比保暖还要暖采纳,获得10
9秒前
Jared应助水泥酱采纳,获得10
9秒前
化学喵完成签到 ,获得积分10
9秒前
不吃香菜完成签到,获得积分10
9秒前
CC发布了新的文献求助10
9秒前
浮游应助小初采纳,获得10
9秒前
9秒前
10秒前
10秒前
HXU完成签到,获得积分20
10秒前
11秒前
情怀应助ll采纳,获得10
11秒前
11秒前
11秒前
11秒前
王三石完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647168
求助须知:如何正确求助?哪些是违规求助? 4773018
关于积分的说明 15038081
捐赠科研通 4805852
什么是DOI,文献DOI怎么找? 2570007
邀请新用户注册赠送积分活动 1526881
关于科研通互助平台的介绍 1485983