An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives

高光谱成像 环境科学 作物 农学 农业工程 天蓬 特征选择 计算机科学 遥感 机器学习 数学 人工智能 地理 生物 工程类 考古
作者
Yuanyuan Fu,Guijun Yang,Ruiliang Pu,Zhenhai Li,Heli Li,Xingang Xu,Xiaoyu Song,Xiaodong Yang,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:124: 126241-126241 被引量:66
标识
DOI:10.1016/j.eja.2021.126241
摘要

Nitrogen (N) is significantly related to crop photosynthetic capacity. Over-and-under-application of N fertilizers not only limits crop productivity but also leads to negative environment impacts. With such a dilemma, a feasible solution is to match N supply with crop needs across time and space. Hyperspectral remote sensing has been gradually regarded as a cost-effective alternative to traditional destructive field sampling and laboratory testing for crop N status determination. Hyperspectral vegetation indices (VIs) and linear nonparametric regression have been the dominant techniques used to estimate crop N status. Machine learning algorithms have gradually exerted advantages in modelling the non-linear relationships between spectral data and crop N. Physically-based methods were rarely used due to the lack of radiative transfer models directly involving N. The existing crop N retrieval methods rely heavily on the relationship between chlorophyll and N. The underlying mechanisms of using protein as a proxy of N and crop protein retrieval from canopy hyperspectral data need further exploration. A comprehensive survey of the existing N-related hyperspectral VIs was made with the aim to provide guidance in VI selection for practical application. The combined use of feature mining and machine learning algorithms was emphasized in the overview. Some feature mining methods applied in the field of classification and chemometrics might be adapted for extracting crop N-related features. The deep learning algorithms need further exploration in crop N status assessment from canopy hyperspectral data. Finally, the major challenges and further development direction in crop N status assessment were discussed. The overview could provide a theoretical and technical support to promote applications of hyperspectral remote sensing in crop N status assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桂花乌龙完成签到,获得积分10
1秒前
1秒前
Hello应助小明同学采纳,获得10
1秒前
拼搏向上发布了新的文献求助10
2秒前
天边发布了新的文献求助10
4秒前
6秒前
Theprisoners应助开心莫茗采纳,获得20
6秒前
6秒前
盛宇大天才完成签到,获得积分10
6秒前
6秒前
谨慎的凝丝完成签到 ,获得积分10
6秒前
JSEILWQ完成签到 ,获得积分10
7秒前
Kyrie完成签到,获得积分10
9秒前
9秒前
葳蕤完成签到,获得积分10
10秒前
fsgfgrhg完成签到,获得积分10
11秒前
KONGBAI完成签到,获得积分10
11秒前
小明同学发布了新的文献求助10
12秒前
zjw完成签到,获得积分20
12秒前
123发布了新的文献求助10
12秒前
Alex完成签到,获得积分10
14秒前
14秒前
学术大亨完成签到,获得积分10
16秒前
16秒前
林林完成签到,获得积分10
17秒前
17秒前
20秒前
yiyi131发布了新的文献求助10
21秒前
123完成签到,获得积分10
23秒前
科研潜水发布了新的文献求助10
23秒前
CipherSage应助ling_lz采纳,获得10
23秒前
25秒前
霸气鹏飞发布了新的文献求助10
25秒前
热沙来提发布了新的文献求助20
26秒前
执着傲菡发布了新的文献求助10
28秒前
29秒前
隐形曼青应助UniTTEC9560采纳,获得10
29秒前
欣然如风发布了新的文献求助10
30秒前
30秒前
Dr. LJ发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712