An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives

高光谱成像 环境科学 作物 农学 农业工程 天蓬 特征选择 计算机科学 遥感 机器学习 数学 人工智能 地理 生物 工程类 考古
作者
Yuanyuan Fu,Guijun Yang,Ruiliang Pu,Zhenhai Li,Heli Li,Xingang Xu,Xiaoyu Song,Xiaodong Yang,Chunjiang Zhao
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:124: 126241-126241 被引量:66
标识
DOI:10.1016/j.eja.2021.126241
摘要

Nitrogen (N) is significantly related to crop photosynthetic capacity. Over-and-under-application of N fertilizers not only limits crop productivity but also leads to negative environment impacts. With such a dilemma, a feasible solution is to match N supply with crop needs across time and space. Hyperspectral remote sensing has been gradually regarded as a cost-effective alternative to traditional destructive field sampling and laboratory testing for crop N status determination. Hyperspectral vegetation indices (VIs) and linear nonparametric regression have been the dominant techniques used to estimate crop N status. Machine learning algorithms have gradually exerted advantages in modelling the non-linear relationships between spectral data and crop N. Physically-based methods were rarely used due to the lack of radiative transfer models directly involving N. The existing crop N retrieval methods rely heavily on the relationship between chlorophyll and N. The underlying mechanisms of using protein as a proxy of N and crop protein retrieval from canopy hyperspectral data need further exploration. A comprehensive survey of the existing N-related hyperspectral VIs was made with the aim to provide guidance in VI selection for practical application. The combined use of feature mining and machine learning algorithms was emphasized in the overview. Some feature mining methods applied in the field of classification and chemometrics might be adapted for extracting crop N-related features. The deep learning algorithms need further exploration in crop N status assessment from canopy hyperspectral data. Finally, the major challenges and further development direction in crop N status assessment were discussed. The overview could provide a theoretical and technical support to promote applications of hyperspectral remote sensing in crop N status assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jim发布了新的文献求助10
刚刚
lll完成签到 ,获得积分10
1秒前
1秒前
小闪完成签到,获得积分10
1秒前
orixero应助oneinlove采纳,获得10
2秒前
Johnpick应助独特靖巧采纳,获得10
4秒前
4秒前
栗子完成签到,获得积分10
5秒前
不配.应助hereiswby采纳,获得10
7秒前
7秒前
噜噜发布了新的文献求助10
8秒前
不配.应助cyh采纳,获得20
9秒前
lixiangrui110发布了新的文献求助10
9秒前
11秒前
冷帅发布了新的文献求助10
12秒前
12秒前
魔法签证1993完成签到,获得积分10
15秒前
xie发布了新的文献求助10
16秒前
cailisi发布了新的文献求助10
18秒前
19秒前
ucuppycake完成签到,获得积分10
19秒前
Lucas应助冷静的莞采纳,获得10
20秒前
Maestro_S应助wanci采纳,获得50
24秒前
24秒前
ASD123发布了新的文献求助10
25秒前
1640应助xiaoyu采纳,获得10
25秒前
26秒前
宴之思完成签到,获得积分10
26秒前
DrD完成签到,获得积分10
29秒前
oneinlove发布了新的文献求助10
31秒前
31秒前
32秒前
ASD123完成签到,获得积分20
34秒前
科研通AI2S应助啵叽一口采纳,获得10
34秒前
Owen应助春暖花开采纳,获得10
36秒前
37秒前
38秒前
38秒前
38秒前
司南应助oneinlove采纳,获得10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870