Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study

医学诊断 接收机工作特性 医学 心律 人工智能 卷积神经网络 节奏 心电图 机器学习 队列 深度学习 考试(生物学) 内科学 心脏病学 计算机科学 放射科 生物 古生物学
作者
Hongling Zhu,Cheng Cheng,Hang Yin,Xingyi Li,Ping Zuo,Jia Ding,Fan Lin,Jingyi Wang,Beitong Zhou,Yonge Li,Shouxing Hu,Yulong Xiong,Binran Wang,Guohua Wan,Xiaoyun Yang,Ye Yuan
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:2 (7): e348-e357 被引量:145
标识
DOI:10.1016/s2589-7500(20)30107-2
摘要

BackgroundMarket-applicable concurrent electrocardiogram (ECG) diagnosis for multiple heart abnormalities that covers a wide range of arrhythmias, with better-than-human accuracy, has not yet been developed. We therefore aimed to engineer a deep learning approach for the automated multilabel diagnosis of heart rhythm or conduction abnormalities by real-time ECG analysis.MethodsWe used a dataset of ECGs (standard 10 s, 12-channel format) from adult patients (aged ≥18 years), with 21 distinct rhythm classes, including most types of heart rhythm or conduction abnormalities, for the diagnosis of arrhythmias at multilabel level. The ECGs were collected from three campuses of Tongji Hospital (Huazhong University of Science and Technology, Wuhan, China) and annotated by cardiologists. We used these datasets to develop a convolutional neural network approach to generate diagnoses of arrythmias. We collected a test dataset of ECGs from a new group of patients not included in the training dataset. The test dataset was annotated by consensus of a committee of board-certified, actively practicing cardiologists. To evaluate the performance of the model we assessed the F1 score and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, as well as quantifying sensitivity and specificity. To validate our results, findings for the test dataset were compared with diagnoses made by 53 ECG physicians working in cardiology departments who had a wide range of experience in ECG interpretation (range 0 to >12 years). An external public validation dataset of 962 ECGs from other hospitals was used to study generalisability of the diagnostic model.FindingsOur training and validation dataset comprised 180 112 ECGs from 70 692 patients, collected between Jan 1, 2012, and Apr 30, 2019. The test dataset comprised 828 ECGs corresponding to 828 new patients, recorded between Sept 11, 2012, and Aug 30, 2019. At the multilabel level, our deep learning approach to diagnosing heart abnormalities resulted in an exact match in 658 (80%) of 828 ECGs, exceeding the mean performance of physicians (552 [67%] for physicians with 0–6 years of experience; 571 [69%] for physicians with 7–12 years of experience; 621 [75%] for physicians with more than 12 years of experience). Our model had an overall mean F1 score of 0·887 compared with 0·789 for physicians with 0–6 years of experience, 0·815 for physicians with 7–12 years of experience, and 0·831 for physicians with more than 12 years of experience. The model had a mean AUC ROC score of 0·983 (95% CI 0·980–0·986), sensitivity of 0·867 (0·849–0·885) and specificity of 0·995 (0·994–0·996). Promising F1 scores were also obtained from the external public database using our proposed model without any model modifications (mean F1 scores of 0·845 in multilabel and 0·852 in single-label ECGs).InterpretationOur model is more accurate than physicians working in cardiology departments at distinguishing a range of distinct arrhythmias in single-label and multilabel ECGs, laying a promising foundation for computational decision-support systems in clinical applications.FundingNational Natural Science Foundation of China and Hubei Science and Technology Project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕佳发布了新的文献求助200
刚刚
科研通AI5应助天大青年采纳,获得10
刚刚
May_9527完成签到,获得积分10
1秒前
Charail完成签到,获得积分10
1秒前
1秒前
1秒前
啊哈发布了新的文献求助10
1秒前
1秒前
2秒前
无限南风完成签到,获得积分20
2秒前
2秒前
科研通AI5应助12彡采纳,获得10
2秒前
2秒前
Lzyi发布了新的文献求助10
2秒前
tangz发布了新的文献求助10
2秒前
大个应助tough采纳,获得10
2秒前
颜靖仇发布了新的文献求助10
2秒前
3秒前
3秒前
李爱国应助子俞采纳,获得10
3秒前
3秒前
orixero应助Bingtao_Lian采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
limmy发布了新的文献求助10
4秒前
劲秉应助鲨鱼宝子采纳,获得10
5秒前
5秒前
科研通AI5应助drwalyssa采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
科研通AI5应助和谐乐儿采纳,获得10
7秒前
ZhangZaikuan完成签到,获得积分10
7秒前
善学以致用应助77采纳,获得10
7秒前
123完成签到,获得积分10
8秒前
今后应助无限南风采纳,获得10
8秒前
科研通AI5应助Reborn采纳,获得10
8秒前
大L完成签到 ,获得积分10
9秒前
Nancy发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667361
求助须知:如何正确求助?哪些是违规求助? 3226016
关于积分的说明 9767186
捐赠科研通 2935921
什么是DOI,文献DOI怎么找? 1608048
邀请新用户注册赠送积分活动 759479
科研通“疑难数据库(出版商)”最低求助积分说明 735404