Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks

计算机科学 卷积神经网络 时态数据库 等级制度 人工智能 方案(数学) 数据挖掘 流量(计算机网络) 模式识别(心理学) 数学 市场经济 计算机安全 数学分析 经济
作者
Cen Chen,Kenli Li,Sin G. Teo,Xiaofeng Zou,Keqin Li,Zeng Zeng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:14 (4): 1-23 被引量:178
标识
DOI:10.1145/3385414
摘要

Traffic flow prediction is crucial for public safety and traffic management, and remains a big challenge because of many complicated factors, e.g., multiple spatio-temporal dependencies, holidays, and weather. Some work leveraged 2D convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) to explore spatial relations and temporal relations, respectively, which outperformed the classical approaches. However, it is hard for these work to model spatio-temporal relations jointly. To tackle this, some studies utilized LSTMs to connect high-level layers of CNNs, but left the spatio-temporal correlations not fully exploited in low-level layers. In this work, we propose novel spatio-temporal CNNs to extract spatio-temporal features simultaneously from low-level to high-level layers, and propose a novel gated scheme to control the spatio-temporal features that should be propagated through the hierarchy of layers. Based on these, we propose an end-to-end framework, multiple gated spatio-temporal CNNs (MGSTC), for citywide traffic flow prediction. MGSTC can explore multiple spatio-temporal dependencies through multiple gated spatio-temporal CNN branches, and combine the spatio-temporal features with external factors dynamically. Extensive experiments on two real traffic datasets demonstrates that MGSTC outperforms other state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静的新梅应助wwwww采纳,获得10
刚刚
moumouchen完成签到,获得积分10
刚刚
科研通AI2S应助爽朗雨后风采纳,获得10
1秒前
1秒前
领导范儿应助乐生采纳,获得10
2秒前
2秒前
2秒前
Akasazi发布了新的文献求助10
3秒前
4秒前
CYT完成签到,获得积分10
6秒前
Trival完成签到 ,获得积分10
7秒前
蓝天发布了新的文献求助10
7秒前
8秒前
8秒前
凝黛完成签到,获得积分10
8秒前
moumouchen发布了新的文献求助10
8秒前
道阻且长发布了新的文献求助10
9秒前
12秒前
felix发布了新的文献求助10
12秒前
柳觅夏完成签到,获得积分10
13秒前
felix发布了新的文献求助10
13秒前
felix发布了新的文献求助10
13秒前
felix发布了新的文献求助10
13秒前
felix发布了新的文献求助10
13秒前
15秒前
sean发布了新的文献求助10
15秒前
16秒前
孙兆杰发布了新的文献求助20
16秒前
酷波er应助叁壹捌采纳,获得10
16秒前
乐生发布了新的文献求助10
18秒前
18秒前
烊紫儿完成签到,获得积分10
19秒前
良辰应助xiaobai采纳,获得10
20秒前
ly完成签到 ,获得积分10
21秒前
22秒前
叁壹捌完成签到,获得积分10
22秒前
ruihong发布了新的文献求助10
22秒前
GuSiwen完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999