Supervised learning in spiking neural networks: A review of algorithms and evaluations

尖峰神经网络 计算机科学 人工神经网络 人工智能 机器学习 监督学习 人工神经网络的类型 随机神经网络 领域(数学) 无监督学习 深度学习 循环神经网络 算法 数学 纯数学
作者
Xiangwen Wang,Xianghong Lin,Xiaochao Dang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:125: 258-280 被引量:165
标识
DOI:10.1016/j.neunet.2020.02.011
摘要

As a new brain-inspired computational model of the artificial neural network, a spiking neural network encodes and processes neural information through precisely timed spike trains. Spiking neural networks are composed of biologically plausible spiking neurons, which have become suitable tools for processing complex temporal or spatiotemporal information. However, because of their intricately discontinuous and implicit nonlinear mechanisms, the formulation of efficient supervised learning algorithms for spiking neural networks is difficult, and has become an important problem in this research field. This article presents a comprehensive review of supervised learning algorithms for spiking neural networks and evaluates them qualitatively and quantitatively. First, a comparison between spiking neural networks and traditional artificial neural networks is provided. The general framework and some related theories of supervised learning for spiking neural networks are then introduced. Furthermore, the state-of-the-art supervised learning algorithms in recent years are reviewed from the perspectives of applicability to spiking neural network architecture and the inherent mechanisms of supervised learning algorithms. A performance comparison of spike train learning of some representative algorithms is also made. In addition, we provide five qualitative performance evaluation criteria for supervised learning algorithms for spiking neural networks and further present a new taxonomy for supervised learning algorithms depending on these five performance evaluation criteria. Finally, some future research directions in this research field are outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhfliang完成签到,获得积分10
2秒前
2秒前
xin完成签到,获得积分10
4秒前
John发布了新的文献求助10
5秒前
zzqblue完成签到,获得积分10
6秒前
oxj发布了新的文献求助10
6秒前
NexusExplorer应助贾克斯采纳,获得10
6秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
6秒前
刘仁轨发布了新的文献求助10
7秒前
destiny完成签到,获得积分10
8秒前
我是雪豹完成签到,获得积分10
8秒前
9秒前
烟花应助RESLR采纳,获得10
10秒前
11秒前
11秒前
Fyyyy完成签到,获得积分10
12秒前
领导范儿应助wwliu199采纳,获得10
12秒前
13秒前
13秒前
旭爸爸发布了新的文献求助10
14秒前
丘比特应助陈陈采纳,获得10
15秒前
王有闲发布了新的文献求助10
16秒前
keyantong666完成签到,获得积分10
17秒前
枯木逢春发布了新的文献求助10
17秒前
wanci应助艺玲采纳,获得10
18秒前
19秒前
19秒前
19秒前
JamesPei应助花里胡哨hh159采纳,获得10
22秒前
科研怪人完成签到,获得积分10
22秒前
23秒前
24秒前
ller发布了新的文献求助10
24秒前
Ahan完成签到,获得积分20
24秒前
清逸发布了新的文献求助10
25秒前
聪明面包发布了新的文献求助200
25秒前
Ahan发布了新的文献求助10
27秒前
陈陈发布了新的文献求助10
27秒前
万能图书馆应助mmz666采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976177
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11202745
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877704
科研通“疑难数据库(出版商)”最低求助积分说明 806516