Supervised learning in spiking neural networks: A review of algorithms and evaluations

尖峰神经网络 计算机科学 人工神经网络 人工智能 机器学习 监督学习 人工神经网络的类型 随机神经网络 领域(数学) 无监督学习 深度学习 循环神经网络 算法 数学 纯数学
作者
Xiangwen Wang,Xianghong Lin,Xiaochao Dang
出处
期刊:Neural Networks [Elsevier BV]
卷期号:125: 258-280 被引量:218
标识
DOI:10.1016/j.neunet.2020.02.011
摘要

As a new brain-inspired computational model of the artificial neural network, a spiking neural network encodes and processes neural information through precisely timed spike trains. Spiking neural networks are composed of biologically plausible spiking neurons, which have become suitable tools for processing complex temporal or spatiotemporal information. However, because of their intricately discontinuous and implicit nonlinear mechanisms, the formulation of efficient supervised learning algorithms for spiking neural networks is difficult, and has become an important problem in this research field. This article presents a comprehensive review of supervised learning algorithms for spiking neural networks and evaluates them qualitatively and quantitatively. First, a comparison between spiking neural networks and traditional artificial neural networks is provided. The general framework and some related theories of supervised learning for spiking neural networks are then introduced. Furthermore, the state-of-the-art supervised learning algorithms in recent years are reviewed from the perspectives of applicability to spiking neural network architecture and the inherent mechanisms of supervised learning algorithms. A performance comparison of spike train learning of some representative algorithms is also made. In addition, we provide five qualitative performance evaluation criteria for supervised learning algorithms for spiking neural networks and further present a new taxonomy for supervised learning algorithms depending on these five performance evaluation criteria. Finally, some future research directions in this research field are outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮完成签到,获得积分10
刚刚
刚刚
哈哈哈完成签到,获得积分20
1秒前
快乐随心完成签到 ,获得积分10
2秒前
了一李完成签到 ,获得积分10
2秒前
fqk完成签到,获得积分10
2秒前
活泼新儿完成签到,获得积分10
2秒前
3秒前
老迟到的羊完成签到 ,获得积分10
3秒前
可爱的函函应助sl采纳,获得30
7秒前
CatC完成签到,获得积分10
7秒前
LIKO完成签到,获得积分10
7秒前
7秒前
7秒前
David发布了新的文献求助10
8秒前
8秒前
clock完成签到 ,获得积分10
8秒前
风中小懒虫完成签到,获得积分10
9秒前
cindy完成签到 ,获得积分10
10秒前
Tysonqu完成签到,获得积分10
10秒前
科研通AI2S应助Promise采纳,获得10
11秒前
12秒前
淡淡阁完成签到 ,获得积分10
12秒前
念念发布了新的文献求助10
12秒前
漂亮的秋天完成签到 ,获得积分10
14秒前
David完成签到,获得积分10
14秒前
Jason完成签到,获得积分10
14秒前
18秒前
19秒前
19秒前
YY完成签到,获得积分10
20秒前
调皮的凝旋完成签到,获得积分10
21秒前
21秒前
念念完成签到,获得积分20
22秒前
崔悦欣完成签到,获得积分10
24秒前
xiaosui完成签到 ,获得积分10
24秒前
夏初水莲洁完成签到,获得积分10
25秒前
Jasper应助小王采纳,获得10
25秒前
ZXH完成签到,获得积分10
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029