Comparison of Data‐Driven Techniques to Reconstruct (1992–2002) and Predict (2017–2018) GRACE‐Like Gridded Total Water Storage Changes Using Climate Inputs

环境科学 稳健性(进化) 气象学 气候学 地理 地质学 生物化学 化学 基因
作者
Fupeng Li,Jürgen Kusche,Roelof Rietbroek,Zhengtao Wang,Ehsan Forootan,Kerstin Schulze,Christina Lück
出处
期刊:Water Resources Research [Wiley]
卷期号:56 (5) 被引量:93
标识
DOI:10.1029/2019wr026551
摘要

Abstract The Gravity Recovery and Climate Experiment (GRACE) mission ended its operation in October 2017, and the GRACE Follow‐On mission was launched only in May 2018, leading to approximately 1 year of data gap. Given that GRACE‐type observations are exclusively providing direct estimates of total water storage change (TWSC), it would be very important to bridge the gap between these two missions. Furthermore, for many climate‐related applications, it is also desirable to reconstruct TWSC prior to the GRACE period. In this study, we aim at comparing different data‐driven methods and identifying the more robust alternatives for predicting GRACE‐like gridded TWSC during the gap and reconstructing them to 1992 using climate inputs. To this end, we first develop a methodological framework to compare different methods such as the multiple linear regression (MLR), artificial neural network (ANN), and autoregressive exogenous (ARX) approaches. Second, metrics are developed to measure the robustness of the predictions. Finally, gridded TWSC within 26 regions are predicted and reconstructed using the identified methods. Test computations suggest that the correlation of predicted TWSC maps with observed ones is more than 0.3 higher than TWSC simulated by hydrological models, at the grid scale of 1° resolution. Furthermore, the reconstructed TWSC correctly reproduce the El Nino‐Southern Oscillation (ENSO) signals. In general, while MLR does not perform best in the training process, it is more robust and could thus be a viable approach both for filling the GRACE gap and for reconstructing long‐period TWSC fields globally when combined with statistical decomposition techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
angel完成签到,获得积分10
1秒前
梓泽丘墟应助盛宇大天才采纳,获得10
3秒前
sarah完成签到,获得积分10
4秒前
5秒前
luoyutian完成签到 ,获得积分10
6秒前
liuzhigang完成签到 ,获得积分10
7秒前
兰静发布了新的文献求助10
9秒前
TAA66发布了新的文献求助10
10秒前
盛宇大天才给盛宇大天才的求助进行了留言
10秒前
ZY完成签到 ,获得积分10
11秒前
科研通AI2S应助小绵羊采纳,获得10
11秒前
曾欢完成签到,获得积分10
12秒前
12秒前
Aglaia完成签到,获得积分10
14秒前
Oct完成签到 ,获得积分10
14秒前
成就向雁完成签到,获得积分10
14秒前
pinghu完成签到,获得积分10
16秒前
grl506发布了新的文献求助10
17秒前
积极的中蓝完成签到 ,获得积分10
18秒前
情怀应助开霁采纳,获得10
18秒前
fang完成签到,获得积分10
22秒前
个性的饼干完成签到,获得积分10
24秒前
24秒前
复杂的方盒完成签到 ,获得积分10
27秒前
呵呵贺哈完成签到 ,获得积分10
31秒前
Hello应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
哎嘿应助科研通管家采纳,获得10
32秒前
搜集达人应助Viva采纳,获得10
33秒前
33秒前
花佩剑完成签到,获得积分10
34秒前
苏苏爱学习完成签到,获得积分10
35秒前
毓雅完成签到,获得积分10
36秒前
大反应釜完成签到,获得积分10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175