A REVIEW OF STATISTICAL METHODS FOR DETERMINATION OF RELATIVE IMPORTANCE OF CORRELATED PREDICTORS AND IDENTIFICATION OF DRIVERS OF CONSUMER LIKING

鉴定(生物学) 统计 线性回归 回归分析 心理学 主流 联合分析 变量 计量经济学 计算机科学 偏爱 数学 生态学 哲学 神学 生物
作者
Jian Bi
出处
期刊:Journal of Sensory Studies [Wiley]
卷期号:27 (2): 87-101 被引量:99
标识
DOI:10.1111/j.1745-459x.2012.00370.x
摘要

ABSTRACT This article attempts to deliver the following message to the researchers and practitioners in the sensory field. (1) Theoretically, drivers of consumer liking is based on relative importance of explanatory variables in a linear model. The problem is complicated when the variables involve linear dependence, which is the common situation in sensory and consumer data. (2) The commonly used methodologies, e.g., conjoint analysis, preference mapping and Kano's model, have serious limitations for determination of relative importance of correlated attributes and identification of drivers of consumer liking. (3) The conventional statistics, e.g., correlation coefficient, standard regression coefficient and P values of tests for regression parameters, etc., are inadequate and invalid measures of relative importance of correlated attributes. (4) There are three state‐of‐the‐art methods for determination of relative importance of correlated attributes. They are the Lindeman, Merenda and Gold's method, Breiman's Random Forest and Johnson's relative weight. This article also provides statistical background and almost exhaustive main references on the topic of relative importance of variables scattered in various academic journals in different fields. The information will help the sensometricians and researchers with more statistical knowledge to embrace the mainstream of the research on the topic and to pursue advanced methods for drivers of consumer liking. PRACTICAL APPLICATIONS This article reviews some new methods for determination of relative importance of correlated explanatory variables to response variable in a regression model. The methods can be used for identification of drivers of consumer liking. The article also provides the sources of the corresponding computer packages and codes implementing the new methods. The packages and codes are freely available and easy to use. The R packages “relaimpo” for the LMG method, “randomForest” and “party” for the original and modified Breiman's Random Forest method are available at http://cran.r‐project.org . The R or S‐Plus code “johnson” for Johnson's relative weight is available from the online supplementary Appendix S1 of this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wbp31发布了新的文献求助10
刚刚
pzqmoon完成签到,获得积分10
刚刚
罗实完成签到 ,获得积分10
1秒前
1秒前
orixero应助sunsuan采纳,获得10
1秒前
scofield完成签到,获得积分20
2秒前
3秒前
科目三应助1332881954采纳,获得30
3秒前
在水一方应助ardejiang采纳,获得10
3秒前
飘逸访蕊发布了新的文献求助10
4秒前
FashionBoy应助旋风0127采纳,获得10
4秒前
面面完成签到,获得积分10
4秒前
4秒前
scofield发布了新的文献求助30
4秒前
Akim应助Lee采纳,获得10
5秒前
浮游应助hhh采纳,获得10
5秒前
暗栀发布了新的文献求助10
5秒前
陈微发布了新的文献求助10
5秒前
2150号发布了新的文献求助10
6秒前
6秒前
7秒前
张诗雨完成签到 ,获得积分10
7秒前
7秒前
thangxtz完成签到,获得积分10
8秒前
李翔发布了新的文献求助10
8秒前
aa完成签到,获得积分10
9秒前
花小胖发布了新的文献求助10
9秒前
沉默芸完成签到,获得积分20
11秒前
酷波er应助呆萌羊青采纳,获得10
12秒前
12秒前
科研通AI5应助仙人掌采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
我要毕业发布了新的文献求助10
12秒前
sunsuan完成签到,获得积分10
13秒前
13秒前
man完成签到,获得积分20
14秒前
qiuyutingchan发布了新的文献求助30
14秒前
天天快乐应助耍酷芙蓉采纳,获得10
15秒前
Attempter完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4954553
求助须知:如何正确求助?哪些是违规求助? 4216890
关于积分的说明 13121171
捐赠科研通 3999023
什么是DOI,文献DOI怎么找? 2188625
邀请新用户注册赠送积分活动 1203758
关于科研通互助平台的介绍 1116092