A REVIEW OF STATISTICAL METHODS FOR DETERMINATION OF RELATIVE IMPORTANCE OF CORRELATED PREDICTORS AND IDENTIFICATION OF DRIVERS OF CONSUMER LIKING

鉴定(生物学) 统计 线性回归 回归分析 心理学 主流 联合分析 变量 计量经济学 计算机科学 偏爱 数学 生态学 神学 生物 哲学
作者
Jian Bi
出处
期刊:Journal of Sensory Studies [Wiley]
卷期号:27 (2): 87-101 被引量:99
标识
DOI:10.1111/j.1745-459x.2012.00370.x
摘要

ABSTRACT This article attempts to deliver the following message to the researchers and practitioners in the sensory field. (1) Theoretically, drivers of consumer liking is based on relative importance of explanatory variables in a linear model. The problem is complicated when the variables involve linear dependence, which is the common situation in sensory and consumer data. (2) The commonly used methodologies, e.g., conjoint analysis, preference mapping and Kano's model, have serious limitations for determination of relative importance of correlated attributes and identification of drivers of consumer liking. (3) The conventional statistics, e.g., correlation coefficient, standard regression coefficient and P values of tests for regression parameters, etc., are inadequate and invalid measures of relative importance of correlated attributes. (4) There are three state‐of‐the‐art methods for determination of relative importance of correlated attributes. They are the Lindeman, Merenda and Gold's method, Breiman's Random Forest and Johnson's relative weight. This article also provides statistical background and almost exhaustive main references on the topic of relative importance of variables scattered in various academic journals in different fields. The information will help the sensometricians and researchers with more statistical knowledge to embrace the mainstream of the research on the topic and to pursue advanced methods for drivers of consumer liking. PRACTICAL APPLICATIONS This article reviews some new methods for determination of relative importance of correlated explanatory variables to response variable in a regression model. The methods can be used for identification of drivers of consumer liking. The article also provides the sources of the corresponding computer packages and codes implementing the new methods. The packages and codes are freely available and easy to use. The R packages “relaimpo” for the LMG method, “randomForest” and “party” for the original and modified Breiman's Random Forest method are available at http://cran.r‐project.org . The R or S‐Plus code “johnson” for Johnson's relative weight is available from the online supplementary Appendix S1 of this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XA发布了新的文献求助10
刚刚
可爱的函函应助butterfly0采纳,获得10
刚刚
刚刚
lllfff发布了新的文献求助10
刚刚
刚刚
刚刚
tiankong完成签到,获得积分10
1秒前
lawang发布了新的文献求助10
1秒前
1秒前
江上大雪飘完成签到,获得积分10
2秒前
liuliu完成签到,获得积分10
2秒前
2秒前
lawang发布了新的文献求助10
2秒前
布洛芬发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
田様应助张博采纳,获得10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
lawang发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
软糖完成签到 ,获得积分10
5秒前
龙行天下发布了新的文献求助10
5秒前
风风风完成签到,获得积分20
6秒前
TOMMY233完成签到,获得积分10
6秒前
可爱的微笑完成签到 ,获得积分10
6秒前
个性南烟完成签到,获得积分10
6秒前
机灵柚子应助LY采纳,获得10
6秒前
琪琪完成签到,获得积分10
7秒前
传奇3应助Pluminata采纳,获得10
8秒前
8秒前
8秒前
8秒前
舒服的水壶完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082