亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The relationship between GABA and stress: ‘it's complicated’

加巴能 γ-氨基丁酸受体 神经科学 补品(生理学) 促肾上腺皮质激素释放激素 突触后电位 下丘脑 生物 抑制性突触后电位 内科学 内分泌学 受体 医学
作者
Jamie Maguire
出处
期刊:The Journal of Physiology [Wiley]
卷期号:596 (10): 1781-1782 被引量:6
标识
DOI:10.1113/jp275937
摘要

GABA is well known to be a critical regulator of the body's physiological response to stress through tight regulation of hypothalamic–pituitary–adrenal (HPA) axis function (Cullinan et al. 2008). Nearly half of the synapses onto corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), which govern the activity of the HPA axis, are GABAergic. CRH neurons have been shown to be regulated by both phasic and tonic GABAergic inhibition, which are distinct types of GABAergic inhibition mediated by specific subtypes of GABAA receptors (GABAARs) with unique pharmacological properties and subcellular distribution. Despite the well-accepted role for GABA in the regulation of the HPA axis, few laboratories have investigated the functional contribution of GABAergic signalling and plasticity on CRH neuronal activity and HPA axis function. In fact, many of the synaptic mechanisms regulating the HPA axis have only recently been elucidated (Levy & Tasker, 2012), and the authors of the article that this Perspective highlights have contributed considerably to our knowledge on this topic (Bains et al. 2015). The negative feedback of glucocorticoids, including corticosterone (CORT), is well established in the regulation of the HPA axis involving actions on glucocorticoid receptors on CRH neurons. The article in this issue of The Journal of Physiology by Colmers & Bains (2018) further examines the effects of CORT on diverse GABAergic mechanisms regulating CRH neurons. The authors demonstrate that CORT alters GABAergic signalling through changes in the expression of postsynaptic GABAARs and tonic GABAergic inhibition. The authors also expose that GABAergic control of CRH neurons is constitutively under suppression through actions on presynaptic GABAB receptors, thereby minimizing GABA release, which can be enhanced by blockade of GABA transporters (GATs). Further, this study also demonstrates that GATs suppress the activation of extrasynaptic GABAARs, limiting tonic GABAergic control of CRH neurons, which can be unmasked by blocking GATs. These data demonstrate that CRH neurons are regulated by both tonic and phasic GABAergic inhibition, although the magnitude of these different types of inhibition may be modified by the extent of GAT function and/or the presence of CORT. Thus, this study demonstrates three separate GABAergic mechanisms controlling the activity of CRH neurons in the PVN: GAT-mediated influence on presynaptic GABAB receptors, GAT regulation of tonic GABAergic inhibition, and CORT-mediated postsynaptic GABAAR regulation. Although the mechanisms of corticosterone-mediated regulation of GABAARs in this context are unknown, a neuroactive derivative of corticosterone, THDOC, has been shown to regulate the expression of GABAARs via phosphorylation of specific GABAAR subunits (Abramian et al. 2014). Interestingly, similar mechanisms have been also shown for other steroid hormones, including ovarian hormones and their neurosteroid derivatives, such as allopregnanolone (Modgil et al. 2017). Thus, there is the potential for ovarian hormone-mediated changes in GABAARs in CRH neurons, which may also impact the regulation of CRH neurons and, thus, the HPA axis. Further studies are required to investigate this potential novel mechanism linking ovarian and stress hormones. Consistent with an interaction between ovarian hormones and stress, altered stress reactivity and vulnerability to mood disorders have been demonstrated over the oestrous cycle (MacKenzie & Maguire, 2014). It is tempting to speculate that the oestrous cycle-linked changes in stress reactivity may involve changes in the GABAergic control of CRH neurons, similar to the CORT observations described here, given the evidence for alterations in GABAAR subunit expression over the oestrous cycle in other brain regions (MacKenzie & Maguire, 2014). The evidence that GATs limit presynaptic GABAB-mediated reduction in GABA release, thereby facilitating GABAergic signalling, whereas, they prevent extrasynaptic GABAAR-mediated tonic inhibition postsynaptically, by limiting the concentration of GABA reaching these receptors, suggests that GATs perform a unique function in balancing tonic and phasic GABAergic inhibition. Further, data presented in Colmers & Bains (2018) demonstrate that presynaptic GABAB receptors are constitutively active on presynaptic terminals impinging on CRH neurons in the PVN. These findings suggest that at baseline GAT function is incapable of completely limiting GABAB-mediated suppression of GABA release. However, the authors also demonstrate a lack of tonic current at baseline, which is only unmasked after GAT inhibition. Therefore, it appears that at baseline GAT function allows some degree of presynaptic GABAB signalling but not actions on extrasynaptic GABAARs which mediate tonic inhibition. This may be due to the localization of GATs in relation to presynaptic GABAB receptors and extrasynaptic GABAARs. Either way, these findings reveal a novel mechanism and unique tuning of the GABAergic control of CRH neurons, which may be further influenced by stress. The physiological relevance of these CORT-mediated regulatory mechanisms controlling CRH neurons remains to be fully explored. For example, how does this mechanism influence stress reactivity? It is reasonable to assume that these changes, such as the CORT-mediated increase in tonic GABAergic inhibition of CRH neurons, would provide a novel negative feedback onto the HPA axis. However, evidence of the stress-induced collapse of the chloride gradient and compromised GABAergic inhibition (Hewitt et al. 2009; Sarkar et al. 2011) add further complexity to the role of GABAergic control of the HPA axis and stress reactivity. In addition to the potential effects of stress-induced CORT on GABAAR regulation, the effects of stress on GAT expression and/or function remains to be determined. Very few studies have investigated changes in GABA uptake associated with stress, which this study suggests may have profound effects on HPA axis function. Previous studies have demonstrated stress-induced changes in the GABAergic regulation of CRH neurons, including altered GABAAR subunit expression, a reduction in presynaptic GABA release, and overall impairments in GABAergic signalling onto CRH neurons (Herman & Tasker, 2016). The CORT-mediated effects on the GABAergic regulation of CRH neurons demonstrated in Colmers & Bains (2018) may contribute to these stress-induced changes in GABAergic regulation of CRH neurons. Future studies are required to fully appreciate the roles of stress and CORT in the GABAergic regulation of CRH neurons and the HPA axis, but this highlighted study takes a huge step in furthering our knowledge regarding the complicated relationship between GABA and stress. The author serves on the Scientific Advisory Board for SAGE Therapeutics. The author is funded by NIH National Institute of Neurological Disorders and Stroke (NS102937).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助王哈哈采纳,获得30
4秒前
xiaoxiao完成签到,获得积分20
7秒前
dingdingding完成签到,获得积分10
8秒前
hayk发布了新的文献求助30
9秒前
狮子沟核聚变骡子完成签到,获得积分10
9秒前
Yuantian发布了新的文献求助30
10秒前
王哈哈完成签到,获得积分20
14秒前
18秒前
故意的问安完成签到 ,获得积分10
21秒前
30秒前
兔子先生完成签到 ,获得积分10
30秒前
31秒前
K神发布了新的文献求助10
35秒前
江氏巨颏虎完成签到,获得积分10
36秒前
善学以致用应助沉静盼易采纳,获得10
38秒前
Swear完成签到 ,获得积分10
42秒前
沉静盼易完成签到,获得积分20
43秒前
凡人丿完成签到,获得积分10
49秒前
活力鸿完成签到,获得积分20
50秒前
57秒前
shenhai发布了新的文献求助10
1分钟前
K神完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
flow发布了新的文献求助10
1分钟前
小炮仗完成签到 ,获得积分10
1分钟前
哭泣秋蝶发布了新的文献求助10
1分钟前
flow完成签到,获得积分10
1分钟前
宝贝完成签到,获得积分10
1分钟前
jasam3514完成签到,获得积分10
1分钟前
1分钟前
贺兰完成签到,获得积分10
1分钟前
1分钟前
shenhai发布了新的文献求助10
1分钟前
青花菜鱼得啦完成签到 ,获得积分10
1分钟前
cherrychou完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989