Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

医学 卷积神经网络 接收机工作特性 人工智能 医学诊断 诊断准确性 曲线下面积 深度学习 黑色素瘤 模式识别(心理学) 机器学习 放射科 计算机科学 内科学 药代动力学 癌症研究
作者
Holger A. Haenssle,Christine Fink,Roland Schneiderbauer,Ferdinand Toberer,Timo Buhl,Andreas Blum,Aadi Kalloo,Arafa Hassen,L. Thomas,Alexander Enk,Lorenz Uhlmann,Christina Alt,Monika Arenbergerová,Renato Marchiori Bakos,Anne Baltzer,Ines Bertlich,Andreas Blum,Therezia Bokor‐Billmann,Jonathan Bowling,Naira Braghiroli,Ralph P. Braun,Kristina Buder‐Bakhaya,Timo Buhl,Horacio Cabo,Leo Čabrijan,Naciye Cevic,Anna Claßen,David Deltgen,Christine Fink,Ivelina Georgieva,Lara‐Elena Hakim‐Meibodi,Susanne Hanner,Franziska Hartmann,Julia Hartmann,Georg Haus,Elti Hoxha,Raimonds Karls,Hiroshi Koga,Jürgen Kreusch,Aimilios Lallas,Pawel Majenka,A.A. Marghoob,Cesare Massone,Lali Mekokishvili,Dominik Mestel,Volker Meyer,Anna Neuberger,K. Nielsen,Margaret Oliviero,Riccardo Pampena,John Paoli,Erika Pawlik,Barbar Rao,Adriana Rendón,Teresa Russo,Ahmed Sadek,Kinga T. Samhaber,Roland Schneiderbauer,Anissa Schweizer,Ferdinand Toberer,Lukas Trennheuser,Lyobomira Vlahova,Alexander Wald,Julia K. Winkler,Priscila Wölbing,Iris Zalaudek
出处
期刊:Annals of Oncology [Elsevier]
卷期号:29 (8): 1836-1842 被引量:1230
标识
DOI:10.1093/annonc/mdy166
摘要

Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P = 0.19) and specificity to 75.7% (±11.7%, P < 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P < 0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
沉默飞珍完成签到,获得积分10
2秒前
白方明发布了新的文献求助10
3秒前
白方明发布了新的文献求助10
3秒前
白方明发布了新的文献求助10
3秒前
白方明发布了新的文献求助10
3秒前
白方明发布了新的文献求助10
4秒前
顾矜应助喜喜采纳,获得10
4秒前
Orange应助高大的水壶采纳,获得10
6秒前
白方明发布了新的文献求助10
7秒前
白方明发布了新的文献求助10
7秒前
敏感时光完成签到,获得积分10
7秒前
谁猪沉浮完成签到,获得积分10
8秒前
英姑应助烽烽烽采纳,获得10
8秒前
脑洞疼应助直率媚颜采纳,获得10
9秒前
LXT完成签到,获得积分10
9秒前
djsj留下了新的社区评论
9秒前
10秒前
上官若男应助doby采纳,获得10
12秒前
儿茶酚胺完成签到,获得积分20
13秒前
卡尔拉发布了新的文献求助20
13秒前
大模型应助慈祥的书易采纳,获得10
14秒前
14秒前
无敌大流流完成签到,获得积分10
15秒前
丘比特应助晨雾采纳,获得10
15秒前
15秒前
Grey完成签到 ,获得积分10
15秒前
aibaa发布了新的文献求助20
16秒前
liu完成签到 ,获得积分10
16秒前
16秒前
星辰大海应助咸鱼咔咔咔采纳,获得10
17秒前
桐桐应助李佰丹采纳,获得10
17秒前
17秒前
18秒前
桐桐应助轻吟采纳,获得10
19秒前
可爱的函函应助山栀茶采纳,获得30
19秒前
执着翠芙发布了新的文献求助10
20秒前
852应助pure采纳,获得10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797