亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

医学 卷积神经网络 接收机工作特性 人工智能 医学诊断 诊断准确性 曲线下面积 深度学习 黑色素瘤 模式识别(心理学) 机器学习 放射科 计算机科学 内科学 药代动力学 癌症研究
作者
Holger A. Haenssle,Christine Fink,Roland Schneiderbauer,Ferdinand Toberer,Timo Buhl,Andreas Blum,Aadi Kalloo,Arafa Hassen,L. Thomas,Alexander Enk,Lorenz Uhlmann,Christina Alt,Monika Arenbergerová,Renato Marchiori Bakos,Anne Baltzer,Ines Bertlich,Andreas Blum,Therezia Bokor‐Billmann,Jonathan Bowling,Naira Braghiroli
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:29 (8): 1836-1842 被引量:1245
标识
DOI:10.1093/annonc/mdy166
摘要

Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P = 0.19) and specificity to 75.7% (±11.7%, P < 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P < 0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴完成签到,获得积分10
1秒前
wing完成签到 ,获得积分10
5秒前
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
小灵通完成签到 ,获得积分10
15秒前
lzl008完成签到 ,获得积分10
15秒前
17秒前
辛夷完成签到,获得积分10
26秒前
lzl007完成签到 ,获得积分10
31秒前
米粒完成签到,获得积分10
32秒前
jueshadi发布了新的文献求助10
36秒前
伍奄发布了新的文献求助10
39秒前
41秒前
ceeray23发布了新的文献求助20
44秒前
sunhhhh完成签到 ,获得积分10
49秒前
伍奄完成签到,获得积分10
58秒前
朴实飞松完成签到 ,获得积分10
1分钟前
1分钟前
yx_cheng应助执着乐双采纳,获得30
1分钟前
艺涵完成签到,获得积分10
1分钟前
1分钟前
小胡萝白发布了新的文献求助10
1分钟前
CipherSage应助虚心沂采纳,获得10
1分钟前
彭于晏应助小胡萝白采纳,获得10
1分钟前
Charles完成签到,获得积分10
1分钟前
anonym11完成签到,获得积分10
1分钟前
CodeCraft应助kingyz采纳,获得20
1分钟前
ice完成签到 ,获得积分10
1分钟前
大个应助mmyhn采纳,获得10
1分钟前
希望天下0贩的0应助akakns采纳,获得10
1分钟前
1分钟前
我爱康康文献完成签到 ,获得积分10
1分钟前
akakns发布了新的文献求助10
1分钟前
yuyuyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
起风了完成签到 ,获得积分10
2分钟前
核桃发布了新的文献求助10
2分钟前
Dz1990m完成签到,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762