Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

医学 卷积神经网络 接收机工作特性 人工智能 医学诊断 诊断准确性 曲线下面积 深度学习 黑色素瘤 模式识别(心理学) 机器学习 放射科 计算机科学 内科学 药代动力学 癌症研究
作者
Holger A. Haenssle,Christine Fink,Roland Schneiderbauer,Ferdinand Toberer,Timo Buhl,Andreas Blum,Aadi Kalloo,Arafa Hassen,L. Thomas,Alexander Enk,Lorenz Uhlmann,Christina Alt,Monika Arenbergerová,Renato Marchiori Bakos,Anne Baltzer,Ines Bertlich,Andreas Blum,Therezia Bokor‐Billmann,Jonathan Bowling,Naira Braghiroli
出处
期刊:Annals of Oncology [Elsevier]
卷期号:29 (8): 1836-1842 被引量:1245
标识
DOI:10.1093/annonc/mdy166
摘要

Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P = 0.19) and specificity to 75.7% (±11.7%, P < 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P < 0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助kbkyvuy采纳,获得10
刚刚
1秒前
1秒前
yao发布了新的文献求助10
1秒前
ndsiu发布了新的文献求助10
1秒前
jun完成签到,获得积分10
1秒前
圆圆完成签到,获得积分10
2秒前
2秒前
2秒前
罗mian发布了新的文献求助10
3秒前
Orange应助tguczf采纳,获得10
3秒前
KevinT完成签到,获得积分10
3秒前
左丘白桃完成签到,获得积分10
4秒前
4秒前
du199944完成签到,获得积分10
4秒前
5秒前
米酒汤圆完成签到,获得积分10
5秒前
5秒前
5秒前
Sky发布了新的文献求助10
5秒前
左左完成签到,获得积分10
6秒前
BowieHuang应助iris2333采纳,获得10
7秒前
可爱的函函应助iris2333采纳,获得10
7秒前
桐桐应助iris2333采纳,获得10
7秒前
斯文败类应助iris2333采纳,获得10
7秒前
关你Peace完成签到,获得积分10
7秒前
SciGPT应助iris2333采纳,获得10
7秒前
Ava应助iris2333采纳,获得10
7秒前
香蕉觅云应助iris2333采纳,获得10
7秒前
顾矜应助iris2333采纳,获得10
7秒前
桐桐应助iris2333采纳,获得10
7秒前
科研通AI2S应助iris2333采纳,获得10
7秒前
大婷子发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
研友_VZG7GZ应助du199944采纳,获得10
8秒前
张玉完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485