已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

医学 卷积神经网络 接收机工作特性 人工智能 医学诊断 诊断准确性 曲线下面积 深度学习 黑色素瘤 模式识别(心理学) 机器学习 放射科 计算机科学 内科学 药代动力学 癌症研究
作者
Holger A. Haenssle,Christine Fink,Roland Schneiderbauer,Ferdinand Toberer,Timo Buhl,Andreas Blum,Aadi Kalloo,Arafa Hassen,L. Thomas,Alexander Enk,Lorenz Uhlmann,Christina Alt,Monika Arenbergerová,Renato Marchiori Bakos,Anne Baltzer,Ines Bertlich,Andreas Blum,Therezia Bokor‐Billmann,Jonathan Bowling,Naira Braghiroli
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:29 (8): 1836-1842 被引量:1245
标识
DOI:10.1093/annonc/mdy166
摘要

Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P = 0.19) and specificity to 75.7% (±11.7%, P < 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P < 0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的大门完成签到,获得积分10
1秒前
可乐完成签到,获得积分10
2秒前
hsp发布了新的文献求助30
2秒前
3秒前
lilili发布了新的文献求助10
3秒前
秀丽的冬易完成签到,获得积分10
4秒前
qinzx完成签到,获得积分10
4秒前
zcz完成签到 ,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
潇澜完成签到,获得积分10
6秒前
6秒前
研友_8D3QVZ完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
zzz关闭了zzz文献求助
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
yj应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
CipherSage应助uvofuofy采纳,获得10
7秒前
changping应助科研通管家采纳,获得10
7秒前
7秒前
YS发布了新的文献求助30
8秒前
8秒前
8秒前
9秒前
9秒前
keyanxinshou发布了新的文献求助10
12秒前
seven发布了新的文献求助10
13秒前
13秒前
蝶鞍发布了新的文献求助10
13秒前
无限完成签到 ,获得积分10
14秒前
寇博翔发布了新的文献求助10
15秒前
hsp完成签到,获得积分10
15秒前
黄锐完成签到 ,获得积分10
17秒前
lilili应助扶光采纳,获得10
18秒前
20秒前
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5147016
求助须知:如何正确求助?哪些是违规求助? 4343752
关于积分的说明 13527913
捐赠科研通 4185144
什么是DOI,文献DOI怎么找? 2295052
邀请新用户注册赠送积分活动 1295432
关于科研通互助平台的介绍 1238662