重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

医学 卷积神经网络 接收机工作特性 人工智能 医学诊断 诊断准确性 曲线下面积 深度学习 黑色素瘤 模式识别(心理学) 机器学习 放射科 计算机科学 内科学 药代动力学 癌症研究
作者
Holger A. Haenssle,Christine Fink,Roland Schneiderbauer,Ferdinand Toberer,Timo Buhl,Andreas Blum,Aadi Kalloo,Arafa Hassen,L. Thomas,Alexander Enk,Lorenz Uhlmann,Christina Alt,Monika Arenbergerová,Renato Marchiori Bakos,Anne Baltzer,Ines Bertlich,Andreas Blum,Therezia Bokor‐Billmann,Jonathan Bowling,Naira Braghiroli
出处
期刊:Annals of Oncology [Elsevier]
卷期号:29 (8): 1836-1842 被引量:1245
标识
DOI:10.1093/annonc/mdy166
摘要

Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P = 0.19) and specificity to 75.7% (±11.7%, P < 0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P < 0.01) and level-II (75.7%, P < 0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P < 0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sirius完成签到,获得积分20
刚刚
xupeng发布了新的文献求助20
刚刚
cdercder发布了新的文献求助10
刚刚
Turquiose0522完成签到,获得积分10
刚刚
落寞的元菱完成签到,获得积分10
刚刚
勤劳傲安完成签到,获得积分10
刚刚
1秒前
2秒前
小猪佩奇完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
天天快乐应助小张采纳,获得10
3秒前
3秒前
GN095完成签到,获得积分10
4秒前
lz发布了新的文献求助10
5秒前
果子完成签到 ,获得积分10
5秒前
钟情紫色短裤完成签到 ,获得积分10
5秒前
777完成签到,获得积分10
6秒前
天天快乐应助xupeng采纳,获得10
6秒前
6秒前
7秒前
7秒前
胡文静发布了新的文献求助10
7秒前
祖国人发布了新的文献求助10
7秒前
华仔应助小白果果采纳,获得10
7秒前
7秒前
无极微光应助奋斗映寒采纳,获得20
7秒前
科研通AI6应助小王要努力采纳,获得10
7秒前
彭于晏应助潇洒的思山采纳,获得10
8秒前
星辰大海应助小卜采纳,获得10
9秒前
9秒前
夜雨完成签到,获得积分10
9秒前
炸鸡柳完成签到,获得积分10
9秒前
平淡的天思完成签到,获得积分10
9秒前
所所应助Doner采纳,获得10
10秒前
执着柏柳发布了新的文献求助10
10秒前
fox发布了新的文献求助10
10秒前
整齐麦片完成签到,获得积分10
10秒前
10秒前
Afra完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516