xStream

计算机科学 数据流挖掘 异常检测 架空(工程) 离群值 数据流 特征(语言学) 维数之咒 特征向量 流算法 数据挖掘 噪音(视频) 钥匙(锁) 算法 人工智能 数学 图像(数学) 上下界 电信 操作系统 语言学 数学分析 哲学 计算机安全
作者
Emaad Manzoor,Hemank Lamba,Leman Akoglu
标识
DOI:10.1145/3219819.3220107
摘要

This work addresses the outlier detection problem for feature-evolving streams, which has not been studied before. In this setting both (1) data points may evolve, with feature values changing, as well as (2) feature space may evolve, with newly-emerging features over time. This is notably different from row-streams, where points with fixed features arrive one at a time. We propose a density-based ensemble outlier detector, called xStream, for this more extreme streaming setting which has the following key properties: (1) it is a constant-space and constant-time (per incoming update) algorithm, (2) it measures outlierness at multiple scales or granularities, it can handle (3 i ) high-dimensionality through distance-preserving projections, and (3$ii$) non-stationarity via $O(1)$-time model updates as the stream progresses. In addition, xStream can address the outlier detection problem for the (less general) disk-resident static as well as row-streaming settings. We evaluate xStream rigorously on numerous real-life datasets in all three settings: static, row-stream, and feature-evolving stream. Experiments under static and row-streaming scenarios show that xStream is as competitive as state-of-the-art detectors and particularly effective in high-dimensions with noise. We also demonstrate that our solution is fast and accurate with modest space overhead for evolving streams, on which there exists no competition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jaum完成签到,获得积分20
刚刚
暴躁的振家完成签到,获得积分10
1秒前
1秒前
bt4567发布了新的文献求助10
2秒前
半凡完成签到 ,获得积分10
2秒前
Park发布了新的文献求助10
2秒前
2秒前
2秒前
轻松傲薇完成签到,获得积分10
3秒前
3秒前
orixero应助司徒不二采纳,获得10
3秒前
华仔应助Esty采纳,获得10
3秒前
屋巫奈奈完成签到,获得积分10
3秒前
4秒前
斯文败类应助Maestro_S采纳,获得10
4秒前
shouyi886完成签到,获得积分10
4秒前
pogia完成签到,获得积分10
4秒前
miyulong完成签到,获得积分10
5秒前
木易心完成签到,获得积分10
5秒前
null应助zero采纳,获得10
5秒前
立追拓完成签到,获得积分10
5秒前
yeti发布了新的文献求助10
5秒前
meimei发布了新的文献求助10
5秒前
6秒前
SciGPT应助大方问柳采纳,获得30
6秒前
科研通AI2S应助STNZEN采纳,获得10
6秒前
迷人迎曼发布了新的文献求助10
7秒前
7秒前
7秒前
矮小的城发布了新的文献求助10
7秒前
bkagyin应助tr采纳,获得10
8秒前
无极微光应助jaum采纳,获得20
8秒前
8秒前
小美美发布了新的文献求助10
9秒前
linlinqi发布了新的文献求助10
9秒前
十令完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531780
求助须知:如何正确求助?哪些是违规求助? 4620574
关于积分的说明 14573778
捐赠科研通 4560339
什么是DOI,文献DOI怎么找? 2498813
邀请新用户注册赠送积分活动 1478687
关于科研通互助平台的介绍 1450049