材料科学
电介质
电容
色散(光学)
六方氮化硼
氮化硼
光电子学
消散
介电损耗
凝聚态物理
纳米技术
光学
石墨烯
热力学
物理
物理化学
化学
电极
作者
Faisal Ahmed,Sunwoo Heo,Zheng Yang,Fida Ali,Chang Won Ho,Ho‐In Lee,Takashi Taniguchi,James Hone,Byoung Hun Lee,Won Jong Yoo
标识
DOI:10.1002/adfm.201804235
摘要
Abstract The dielectric dispersion of a material holds significant importance for the understanding of basic material characteristics and the design parameters of a functional device. Here, the dielectric dispersion characteristics of multilayer hexagonal boron nitride (hBN) using time domain reflectometry under an extended device operating frequency range up to 100 MHz are studied. Contrary to what is previously reported, the capacitance, hence the effective dielectric constant, of hBN decreases with the increase of frequency above the MHz range, indicating heat dissipation in lossy hBN dielectric. Furthermore, hBN shows stubborn dielectric characteristics with temperature changes that confirm its thermal stability in extreme operating conditions. The charge carriers in hBN are transported by Fowler–Nordhiem tunneling with increasing the electrical field. Lastly, hBN endures electrical field of 7.8 MV cm −1 that implies its potential use as a promising dielectric material. These results will benefit the research and development of hBN supported high‐speed electronics operated at high‐frequency conditions for energy‐efficient device applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI