已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transfer learning for time series classification

学习迁移 计算机科学 深度学习 人工智能 卷积神经网络 水准点(测量) 一般化 人工神经网络 机器学习 任务(项目管理) 模式识别(心理学) 数学分析 数学 管理 大地测量学 经济 地理
作者
Hassan Ismail Fawaz,Germain Forestier,Jonathan Weber,Lhassane Idoumghar,Pierre-Alain Müller
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Université de Nantes 被引量:149
标识
DOI:10.1109/bigdata.2018.8621990
摘要

Transfer learning for deep neural networks is the process of first training a base network on a source dataset, and then transferring the learned features (the network's weights) to a second network to be trained on a target dataset. This idea has been shown to improve deep neural network's generalization capabilities in many computer vision tasks such as image recognition and object localization. Apart from these applications, deep Convolutional Neural Networks (CNNs) have also recently gained popularity in the Time Series Classification (TSC) community. However, unlike for image recognition problems, transfer learning techniques have not yet been investigated thoroughly for the TSC task. This is surprising as the accuracy of deep learning models for TSC could potentially be improved if the model is fine-tuned from a pre-trained neural network instead of training it from scratch. In this paper, we fill this gap by investigating how to transfer deep CNNs for the TSC task. To evaluate the potential of transfer learning, we performed extensive experiments using the UCR archive which is the largest publicly available TSC benchmark containing 85 datasets. For each dataset in the archive, we pre-trained a model and then fine-tuned it on the other datasets resulting in 7140 different deep neural networks. These experiments revealed that transfer learning can improve or degrade the model's predictions depending on the dataset used for transfer. Therefore, in an effort to predict the best source dataset for a given target dataset, we propose a new method relying on Dynamic Time Warping to measure inter-datasets similarities. We describe how our method can guide the transfer to choose the best source dataset leading to an improvement in accuracy on 71 out of 85 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助徐大夫采纳,获得10
刚刚
1秒前
kai0305完成签到,获得积分10
1秒前
善学以致用应助俺也一样采纳,获得30
1秒前
听曲散步完成签到,获得积分10
2秒前
3秒前
zkeeee发布了新的文献求助10
4秒前
leiiiiiiii发布了新的文献求助10
5秒前
天天向上发布了新的文献求助10
6秒前
yy完成签到,获得积分10
6秒前
7秒前
Akim应助受伤代容采纳,获得10
9秒前
10秒前
14秒前
无花果应助zkeeee采纳,获得10
15秒前
土豆番茄块完成签到,获得积分20
18秒前
月亮打盹儿完成签到 ,获得积分10
19秒前
19秒前
22秒前
filter发布了新的文献求助30
22秒前
24秒前
恒星的恒心完成签到 ,获得积分10
24秒前
归期完成签到,获得积分10
24秒前
小二郎应助静汉采纳,获得10
25秒前
25秒前
wg言完成签到 ,获得积分10
29秒前
许诺发布了新的文献求助10
30秒前
Jozee发布了新的文献求助10
32秒前
小鳄鱼一只应助许诺采纳,获得10
35秒前
kai0305发布了新的文献求助10
36秒前
wwww完成签到 ,获得积分10
36秒前
吐丝麵包完成签到 ,获得积分10
39秒前
Jozee完成签到,获得积分10
40秒前
小马甲应助蓓蓓采纳,获得10
41秒前
栖许完成签到,获得积分20
45秒前
Upupupiu完成签到,获得积分10
45秒前
47秒前
Jasper应助科研通管家采纳,获得10
49秒前
桐桐应助科研通管家采纳,获得10
49秒前
深情安青应助科研通管家采纳,获得10
49秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712684
求助须知:如何正确求助?哪些是违规求助? 3260800
关于积分的说明 9915101
捐赠科研通 2974358
什么是DOI,文献DOI怎么找? 1630898
邀请新用户注册赠送积分活动 773751
科研通“疑难数据库(出版商)”最低求助积分说明 744404