Localisation of Colorectal Polyps by Convolutional Neural Network Features Learnt from White Light and Narrow Band Endoscopic Images of Multiple Databases

卷积神经网络 计算机科学 人工智能 帧(网络) 计算机视觉 深度学习 模态(人机交互) 窄带成像 数据集 医学影像学 目标检测 跳跃式监视 模式识别(心理学) 数据库 内窥镜检查 放射科 医学 电信
作者
Yali Zheng,Ruikai Zhang,Ruoxi Yu,Yuqi Jiang,Tony W. C. Mak,Sunny H. Wong,James Y.W. Lau,Carmen C. Y. Poon
出处
期刊:International Conference of the IEEE Engineering in Medicine and Biology Society 被引量:23
标识
DOI:10.1109/embc.2018.8513337
摘要

Algorithms for localising colorectal polyps have been studied extensively; however, they were often trained and tested using the same database. In this study, we present a new application of a unified and real-time object detector based on You-Only-Look-Once (YOLO) convolutional neural network (CNN) for localizing polyps with bounding boxes in endoscopic images. The model was first pre-trained with non-medical images and then fine-tuned with colonoscopic images from three different databases, including an image set we collected from 106 patients using narrow-band (NB) imaging endoscopy. YOLO was tested on 196 white light (WL) images of an independent public database. YOLO achieved a precision of 79.3% and sensitivity of 68.3% with time efficiency of 0.06 sec/frame in the localization task when trained by augmented images from multiple WL databases. In conclusion, YOLO has great potential to be used to assist endoscopists in localising colorectal polyps during endoscopy. CNN features of WL and NB endoscopic images are different and should be considered separately. A large-scale database that covers different scenarios, imaging modalities and scales is lacking but crucial in order to bring this research into reality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助mirror采纳,获得10
刚刚
111完成签到,获得积分10
1秒前
4秒前
彭锦关注了科研通微信公众号
5秒前
Hopper完成签到,获得积分10
5秒前
lee完成签到,获得积分10
6秒前
7秒前
7秒前
一颗树完成签到,获得积分10
8秒前
棖0921发布了新的文献求助10
10秒前
11秒前
dwz发布了新的文献求助10
13秒前
13秒前
竹筏过海应助一颗树采纳,获得30
13秒前
科研通AI5应助Reese采纳,获得10
14秒前
李健应助iu采纳,获得10
14秒前
CipherSage应助麦乐酷采纳,获得10
15秒前
节能减排完成签到,获得积分10
15秒前
15秒前
如果完成签到,获得积分10
15秒前
wild_yawp发布了新的文献求助10
16秒前
微笑的弘文完成签到,获得积分10
17秒前
狂野的尔容完成签到,获得积分10
18秒前
嘎嘎嘎嘎发布了新的文献求助50
19秒前
19秒前
彭锦发布了新的文献求助10
19秒前
19秒前
科研通AI5应助棖0921采纳,获得10
20秒前
小蘑菇应助dwz采纳,获得10
20秒前
21秒前
酷波er应助hyperthermal1采纳,获得30
22秒前
四憙完成签到 ,获得积分10
22秒前
luoye完成签到,获得积分10
23秒前
24秒前
Punch完成签到,获得积分10
24秒前
万能图书馆应助964230130采纳,获得10
24秒前
25秒前
25秒前
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843