适体
化学
生物分析
荧光
石墨烯
猝灭(荧光)
分析物
组合化学
核酸
脱氧核酶
生物传感器
DNA
寡核苷酸
纳米技术
检出限
分子信标
色谱法
生物物理学
生物化学
材料科学
分子生物学
物理
生物
量子力学
作者
Yifei Lou,Yongbo Peng,Xiaowei Luo,Zhiming Yang,Ruifeng Wang,Dewen Sun,Shuang Song,Yuyu Tan,Jiahao Huang,Liang Cui
标识
DOI:10.1007/s00604-019-3596-1
摘要
This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI