iLOCuS: Incentivizing Vehicle Mobility to Optimize Sensing Distribution in Crowd Sensing

背包问题 计算机科学 出租车 任务(项目管理) 激励 分布(数学) 软件部署 样品(材料) 实时计算 运输工程 算法 工程类 数学分析 化学 数学 系统工程 色谱法 经济 微观经济学 操作系统
作者
Susu Xu,Xinlei Chen,Xidong Pi,Carlee Joe‐Wong,Pei Zhang,Hae Young Noh
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:75
标识
DOI:10.1109/tmc.2019.2915838
摘要

Vehicular crowd sensing systems are designed to achieve large spatio-temporal sensing coverage with low-cost in deployment and maintenance. For example, taxi platforms can be utilized for sensing city-wide air quality. However, the goals of vehicle agents are often inconsistent with the goal of the crowdsourcer. Vehicle agents like taxis prioritize searching for passenger ride requests (defined as task requests), which leads them to gather in busy regions. In contrast, sensing systems often need to sample data over the entire city with a desired distribution (e.g., Uniform distribution, Gaussian Mixture distribution, etc.) to ensure sufficient spatio-temporal information for further analysis. This inconsistency decreases the sensing coverage quality and thus impairs the quality of the collected information. A simple approach to reduce the inconsistency is to greedily incentivize the vehicle agents to different regions. However, incentivization brings challenges, including the heterogeneity of desired target distributions, limited budget to incentivize more vehicle agents, and the high computational complexity of optimizing incentivizing strategies. To this end, we present a vehicular crowd sensing system to efficiently incentivize the vehicle agents to match the sensing distribution of the sampled data to the desired target distribution with a limited budget. To make the system flexible to various desired target distributions, we formulate the incentivizing problem as a new type of non-linear multiple-choice knapsack problem, with the dissimilarity between the collected data distribution and the desired distribution as the objective function. To utilize the budget efficiently, we design a customized incentive by combining monetary incentives and potential task (ride) requests at the destination. Meanwhile, an efficient optimization algorithm, iLOCuS, is presented to plan the incentivizing policy for vehicle agents to decompose the sensing distribution into two distinct levels: time-location level and vehicle level, to approximate the optimal solution iteratively and reduce the dissimilarity objective. Our experimental results based on real-world data show that our system can reduce up to 26.99 percent of the dissimilarity between the sensed and target distributions compared to benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
李小小完成签到,获得积分10
4秒前
plcukyu发布了新的文献求助10
4秒前
浮舟寄沧海完成签到,获得积分10
4秒前
4秒前
zzh发布了新的文献求助10
4秒前
decademe完成签到,获得积分10
6秒前
6秒前
7秒前
子月之路发布了新的文献求助10
7秒前
Joff_W发布了新的文献求助10
7秒前
7秒前
热心芷雪完成签到,获得积分10
7秒前
23xyke完成签到,获得积分10
8秒前
CodeCraft应助萌宁采纳,获得10
9秒前
10秒前
汎影发布了新的文献求助10
11秒前
斯文败类应助Z_2243采纳,获得30
11秒前
科研通AI6应助zzh采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
Dan完成签到,获得积分10
13秒前
大模型应助me采纳,获得10
13秒前
Islay50ppm完成签到 ,获得积分10
14秒前
jasmine完成签到,获得积分10
14秒前
科研通AI6应助热情钵钵鸡采纳,获得10
15秒前
现代子默发布了新的文献求助10
16秒前
18秒前
坨坨完成签到,获得积分10
18秒前
木木木完成签到,获得积分10
18秒前
明灯三千完成签到,获得积分10
18秒前
wanci应助heidi采纳,获得10
18秒前
Yuuuan完成签到,获得积分10
18秒前
Andone完成签到,获得积分10
20秒前
21秒前
拼搏太英完成签到,获得积分10
22秒前
木木木发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243