iLOCuS: Incentivizing Vehicle Mobility to Optimize Sensing Distribution in Crowd Sensing

背包问题 计算机科学 出租车 任务(项目管理) 激励 分布(数学) 软件部署 样品(材料) 实时计算 运输工程 算法 工程类 数学 色谱法 操作系统 数学分析 经济 微观经济学 化学 系统工程
作者
Susu Xu,Xinlei Chen,Xidong Pi,Carlee Joe‐Wong,Pei Zhang,Hae Young Noh
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:75
标识
DOI:10.1109/tmc.2019.2915838
摘要

Vehicular crowd sensing systems are designed to achieve large spatio-temporal sensing coverage with low-cost in deployment and maintenance. For example, taxi platforms can be utilized for sensing city-wide air quality. However, the goals of vehicle agents are often inconsistent with the goal of the crowdsourcer. Vehicle agents like taxis prioritize searching for passenger ride requests (defined as task requests), which leads them to gather in busy regions. In contrast, sensing systems often need to sample data over the entire city with a desired distribution (e.g., Uniform distribution, Gaussian Mixture distribution, etc.) to ensure sufficient spatio-temporal information for further analysis. This inconsistency decreases the sensing coverage quality and thus impairs the quality of the collected information. A simple approach to reduce the inconsistency is to greedily incentivize the vehicle agents to different regions. However, incentivization brings challenges, including the heterogeneity of desired target distributions, limited budget to incentivize more vehicle agents, and the high computational complexity of optimizing incentivizing strategies. To this end, we present a vehicular crowd sensing system to efficiently incentivize the vehicle agents to match the sensing distribution of the sampled data to the desired target distribution with a limited budget. To make the system flexible to various desired target distributions, we formulate the incentivizing problem as a new type of non-linear multiple-choice knapsack problem, with the dissimilarity between the collected data distribution and the desired distribution as the objective function. To utilize the budget efficiently, we design a customized incentive by combining monetary incentives and potential task (ride) requests at the destination. Meanwhile, an efficient optimization algorithm, iLOCuS, is presented to plan the incentivizing policy for vehicle agents to decompose the sensing distribution into two distinct levels: time-location level and vehicle level, to approximate the optimal solution iteratively and reduce the dissimilarity objective. Our experimental results based on real-world data show that our system can reduce up to 26.99 percent of the dissimilarity between the sensed and target distributions compared to benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
横A发布了新的文献求助20
刚刚
刚刚
草莓味的星星完成签到,获得积分10
1秒前
Lucas应助ZZY采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
pharrah发布了新的文献求助10
1秒前
孟寐以求发布了新的文献求助20
2秒前
喔喔喔哦wo完成签到,获得积分10
2秒前
fdawn完成签到,获得积分10
2秒前
南浔发布了新的文献求助10
3秒前
niu应助伶俐的不尤采纳,获得10
3秒前
自信书文完成签到 ,获得积分10
4秒前
4秒前
厚德载物完成签到 ,获得积分10
4秒前
lulujiang完成签到 ,获得积分10
5秒前
Akim应助体贴的无色采纳,获得10
5秒前
一个刚刚完成签到,获得积分10
5秒前
吴淑明发布了新的文献求助10
5秒前
丘比特应助xzy采纳,获得10
5秒前
wanci应助呆萌菲音采纳,获得10
6秒前
Bruce完成签到,获得积分10
6秒前
MX001完成签到,获得积分10
6秒前
7秒前
大个应助普鲁卡因采纳,获得10
7秒前
Hello应助nezhaalicia采纳,获得10
7秒前
7秒前
苏silence发布了新的文献求助10
8秒前
9秒前
肌肉猛男完成签到,获得积分10
9秒前
领导范儿应助memorise采纳,获得30
9秒前
SciGPT应助龙江游侠采纳,获得10
9秒前
火星上的西牛完成签到,获得积分10
9秒前
qwdqwd完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
明理的蜗牛完成签到,获得积分10
11秒前
pharrah完成签到,获得积分10
11秒前
Qianyun完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017