清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

iLOCuS: Incentivizing Vehicle Mobility to Optimize Sensing Distribution in Crowd Sensing

背包问题 计算机科学 出租车 任务(项目管理) 激励 分布(数学) 软件部署 样品(材料) 实时计算 运输工程 算法 工程类 数学 色谱法 操作系统 数学分析 经济 微观经济学 化学 系统工程
作者
Susu Xu,Xinlei Chen,Xidong Pi,Carlee Joe‐Wong,Pei Zhang,Hae Young Noh
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:75
标识
DOI:10.1109/tmc.2019.2915838
摘要

Vehicular crowd sensing systems are designed to achieve large spatio-temporal sensing coverage with low-cost in deployment and maintenance. For example, taxi platforms can be utilized for sensing city-wide air quality. However, the goals of vehicle agents are often inconsistent with the goal of the crowdsourcer. Vehicle agents like taxis prioritize searching for passenger ride requests (defined as task requests), which leads them to gather in busy regions. In contrast, sensing systems often need to sample data over the entire city with a desired distribution (e.g., Uniform distribution, Gaussian Mixture distribution, etc.) to ensure sufficient spatio-temporal information for further analysis. This inconsistency decreases the sensing coverage quality and thus impairs the quality of the collected information. A simple approach to reduce the inconsistency is to greedily incentivize the vehicle agents to different regions. However, incentivization brings challenges, including the heterogeneity of desired target distributions, limited budget to incentivize more vehicle agents, and the high computational complexity of optimizing incentivizing strategies. To this end, we present a vehicular crowd sensing system to efficiently incentivize the vehicle agents to match the sensing distribution of the sampled data to the desired target distribution with a limited budget. To make the system flexible to various desired target distributions, we formulate the incentivizing problem as a new type of non-linear multiple-choice knapsack problem, with the dissimilarity between the collected data distribution and the desired distribution as the objective function. To utilize the budget efficiently, we design a customized incentive by combining monetary incentives and potential task (ride) requests at the destination. Meanwhile, an efficient optimization algorithm, iLOCuS, is presented to plan the incentivizing policy for vehicle agents to decompose the sensing distribution into two distinct levels: time-location level and vehicle level, to approximate the optimal solution iteratively and reduce the dissimilarity objective. Our experimental results based on real-world data show that our system can reduce up to 26.99 percent of the dissimilarity between the sensed and target distributions compared to benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MaoXinLei完成签到,获得积分20
3秒前
如意竺完成签到,获得积分10
3秒前
10秒前
xun发布了新的文献求助10
15秒前
微卫星不稳定完成签到 ,获得积分0
18秒前
壮观之瑶完成签到 ,获得积分10
20秒前
披着羊皮的狼完成签到 ,获得积分10
27秒前
JamesPei应助xun采纳,获得10
29秒前
sunialnd发布了新的文献求助10
34秒前
48秒前
51秒前
JoeyJin发布了新的文献求助10
51秒前
xun发布了新的文献求助10
52秒前
xun完成签到,获得积分20
1分钟前
由由完成签到 ,获得积分10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
小蘑菇应助JoeyJin采纳,获得10
1分钟前
Crazybow5完成签到,获得积分10
1分钟前
1分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
2分钟前
Ava应助勇往直前采纳,获得10
2分钟前
2分钟前
2分钟前
勇往直前发布了新的文献求助10
2分钟前
3分钟前
JoeyJin发布了新的文献求助10
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分0
3分钟前
如歌完成签到,获得积分10
3分钟前
3分钟前
3分钟前
JoeyJin发布了新的文献求助10
3分钟前
kitty777完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346975
求助须知:如何正确求助?哪些是违规求助? 4481382
关于积分的说明 13947618
捐赠科研通 4379405
什么是DOI,文献DOI怎么找? 2406359
邀请新用户注册赠送积分活动 1398970
关于科研通互助平台的介绍 1371850