iLOCuS: Incentivizing Vehicle Mobility to Optimize Sensing Distribution in Crowd Sensing

背包问题 计算机科学 出租车 任务(项目管理) 激励 分布(数学) 软件部署 样品(材料) 实时计算 运输工程 算法 工程类 数学分析 化学 数学 系统工程 色谱法 经济 微观经济学 操作系统
作者
Susu Xu,Xinlei Chen,Xidong Pi,Carlee Joe‐Wong,Pei Zhang,Hae Young Noh
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:75
标识
DOI:10.1109/tmc.2019.2915838
摘要

Vehicular crowd sensing systems are designed to achieve large spatio-temporal sensing coverage with low-cost in deployment and maintenance. For example, taxi platforms can be utilized for sensing city-wide air quality. However, the goals of vehicle agents are often inconsistent with the goal of the crowdsourcer. Vehicle agents like taxis prioritize searching for passenger ride requests (defined as task requests), which leads them to gather in busy regions. In contrast, sensing systems often need to sample data over the entire city with a desired distribution (e.g., Uniform distribution, Gaussian Mixture distribution, etc.) to ensure sufficient spatio-temporal information for further analysis. This inconsistency decreases the sensing coverage quality and thus impairs the quality of the collected information. A simple approach to reduce the inconsistency is to greedily incentivize the vehicle agents to different regions. However, incentivization brings challenges, including the heterogeneity of desired target distributions, limited budget to incentivize more vehicle agents, and the high computational complexity of optimizing incentivizing strategies. To this end, we present a vehicular crowd sensing system to efficiently incentivize the vehicle agents to match the sensing distribution of the sampled data to the desired target distribution with a limited budget. To make the system flexible to various desired target distributions, we formulate the incentivizing problem as a new type of non-linear multiple-choice knapsack problem, with the dissimilarity between the collected data distribution and the desired distribution as the objective function. To utilize the budget efficiently, we design a customized incentive by combining monetary incentives and potential task (ride) requests at the destination. Meanwhile, an efficient optimization algorithm, iLOCuS, is presented to plan the incentivizing policy for vehicle agents to decompose the sensing distribution into two distinct levels: time-location level and vehicle level, to approximate the optimal solution iteratively and reduce the dissimilarity objective. Our experimental results based on real-world data show that our system can reduce up to 26.99 percent of the dissimilarity between the sensed and target distributions compared to benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zZZ完成签到 ,获得积分10
1秒前
yao发布了新的文献求助30
1秒前
冷艳的寻冬完成签到,获得积分10
1秒前
2秒前
万能图书馆应助段yt采纳,获得10
2秒前
2秒前
3秒前
NN完成签到,获得积分10
4秒前
4秒前
Ty完成签到,获得积分10
4秒前
DWQ完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
LLL完成签到,获得积分10
7秒前
jony发布了新的文献求助10
7秒前
killer完成签到,获得积分20
7秒前
8秒前
国家栋梁发布了新的文献求助10
8秒前
米线儿完成签到,获得积分10
9秒前
汤襄发布了新的文献求助10
10秒前
10秒前
DWQ发布了新的文献求助10
10秒前
10秒前
霁星河完成签到,获得积分10
12秒前
orixero应助caas6采纳,获得10
12秒前
12秒前
13秒前
13秒前
任侠传发布了新的文献求助10
13秒前
善良初蝶完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助聪慧石头采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
无语完成签到,获得积分10
15秒前
陈陈发布了新的文献求助20
15秒前
15秒前
changshouzhi发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108