iLOCuS: Incentivizing Vehicle Mobility to Optimize Sensing Distribution in Crowd Sensing

背包问题 计算机科学 出租车 任务(项目管理) 激励 分布(数学) 软件部署 样品(材料) 实时计算 运输工程 算法 工程类 数学 色谱法 操作系统 数学分析 经济 微观经济学 化学 系统工程
作者
Susu Xu,Xinlei Chen,Xidong Pi,Carlee Joe‐Wong,Pei Zhang,Hae Young Noh
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:75
标识
DOI:10.1109/tmc.2019.2915838
摘要

Vehicular crowd sensing systems are designed to achieve large spatio-temporal sensing coverage with low-cost in deployment and maintenance. For example, taxi platforms can be utilized for sensing city-wide air quality. However, the goals of vehicle agents are often inconsistent with the goal of the crowdsourcer. Vehicle agents like taxis prioritize searching for passenger ride requests (defined as task requests), which leads them to gather in busy regions. In contrast, sensing systems often need to sample data over the entire city with a desired distribution (e.g., Uniform distribution, Gaussian Mixture distribution, etc.) to ensure sufficient spatio-temporal information for further analysis. This inconsistency decreases the sensing coverage quality and thus impairs the quality of the collected information. A simple approach to reduce the inconsistency is to greedily incentivize the vehicle agents to different regions. However, incentivization brings challenges, including the heterogeneity of desired target distributions, limited budget to incentivize more vehicle agents, and the high computational complexity of optimizing incentivizing strategies. To this end, we present a vehicular crowd sensing system to efficiently incentivize the vehicle agents to match the sensing distribution of the sampled data to the desired target distribution with a limited budget. To make the system flexible to various desired target distributions, we formulate the incentivizing problem as a new type of non-linear multiple-choice knapsack problem, with the dissimilarity between the collected data distribution and the desired distribution as the objective function. To utilize the budget efficiently, we design a customized incentive by combining monetary incentives and potential task (ride) requests at the destination. Meanwhile, an efficient optimization algorithm, iLOCuS, is presented to plan the incentivizing policy for vehicle agents to decompose the sensing distribution into two distinct levels: time-location level and vehicle level, to approximate the optimal solution iteratively and reduce the dissimilarity objective. Our experimental results based on real-world data show that our system can reduce up to 26.99 percent of the dissimilarity between the sensed and target distributions compared to benchmark methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬山兰发布了新的文献求助10
刚刚
香蕉觅云应助鱼yu采纳,获得10
刚刚
1秒前
foreverer99完成签到,获得积分20
1秒前
2秒前
zhencheng发布了新的文献求助10
2秒前
薄荷油完成签到 ,获得积分10
2秒前
2秒前
张wushudyej完成签到,获得积分10
3秒前
ymu完成签到,获得积分20
4秒前
勤劳的蓝发布了新的文献求助10
4秒前
月亮发布了新的文献求助10
4秒前
orixero应助老杜采纳,获得10
4秒前
程式发布了新的文献求助10
4秒前
wo完成签到 ,获得积分10
5秒前
spume完成签到 ,获得积分10
5秒前
ppg123应助hh0采纳,获得10
5秒前
月亮很亮发布了新的文献求助10
5秒前
7秒前
华仔完成签到,获得积分10
7秒前
lijiuyi发布了新的文献求助10
8秒前
8秒前
9秒前
爱吃土豆的小狸猫完成签到,获得积分10
10秒前
无花果应助1231采纳,获得10
10秒前
黄哒哒完成签到 ,获得积分10
11秒前
回忆的独奏完成签到 ,获得积分10
11秒前
12秒前
12秒前
lenny完成签到,获得积分10
13秒前
Claudplz完成签到,获得积分10
13秒前
迫不急die发布了新的文献求助10
14秒前
末排差生完成签到,获得积分0
14秒前
14秒前
14秒前
魁梧的海秋应助咸鱼一号采纳,获得10
14秒前
14秒前
15秒前
lenny发布了新的文献求助10
17秒前
漂亮幻莲发布了新的文献求助10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254742
求助须知:如何正确求助?哪些是违规求助? 2896950
关于积分的说明 8295176
捐赠科研通 2565949
什么是DOI,文献DOI怎么找? 1393480
科研通“疑难数据库(出版商)”最低求助积分说明 652536
邀请新用户注册赠送积分活动 630104