材料科学
阴极
扩散
钠
电极
钛
兴奋剂
相(物质)
化学工程
阳极
钠离子电池
扩散阻挡层
分析化学(期刊)
离子
纳米技术
图层(电子)
法拉第效率
物理化学
冶金
光电子学
热力学
化学
有机化学
工程类
物理
量子力学
色谱法
作者
Yun Ji Park,Ji Ung Choi,Jae Hyeon Jo,Chang‐Heum Jo,Jongsoon Kim,Seung‐Taek Myung
标识
DOI:10.1002/adfm.201901912
摘要
Abstract Herein, Ti 4+ in P′2‐Na 0.67 [(Mn 0.78 Fe 0.22 ) 0.9 Ti 0.1 ]O 2 is proposed as a new strategy for optimization of Mn‐based cathode materials for sodium‐ion batteries, which enables a single phase reaction during de‐/sodiation. The approach is to utilize the stronger Ti–O bond in the transition metal layers that can suppress the movements of Mn–O and Fe–O by sharing the oxygen with Ti by the sequence of Mn–O–Ti–O–Fe. It delivers a discharge capacity of ≈180 mAh g −1 over 200 cycles (86% retention), with S‐shaped smooth charge–discharge curves associated with a small volume change during cycling. The single phase reaction with a small volume change is further confirmed by operando synchrotron X‐ray diffraction. The low activation barrier energy of ≈541 meV for Na + diffusion is predicted using first‐principles calculations. As a result, Na 0.67 [(Mn 0.78 Fe 0.22 ) 0.9 Ti 0.1 ]O 2 can deliver a high reversible capacity of ≈153 mAh g −1 even at 5C (1.3 A g −1 ), which corresponds to ≈85% of the capacity at 0.1C (26 mA g −1 ). The nature of the sodium storage mechanism governing the ultrahigh electrode performance in a full cell with a hard carbon anode is elucidated, revealing the excellent cyclability and good retention (≈80%) for 500 cycles (111 mAh g −1 ) at 5C (1.3 A g −1 ).
科研通智能强力驱动
Strongly Powered by AbleSci AI