Learning to Rank Peptide-Spectrum Matches Using Genetic Programming

秩(图论) 排名(信息检索) 计算机科学 支持向量机 功能(生物学) 人工智能 模式识别(心理学) 数据挖掘 计算生物学 机器学习 数学 生物 遗传学 生物化学 组合数学
作者
Samaneh Azari,Jun Zhang,Bing Xue,Lifeng Peng
标识
DOI:10.1109/cec.2019.8790049
摘要

The analysis of tandem mass spectrometry (MS/MS) proteomics data relies on automated methods that assign peptides to observed MS/MS spectra. Typically these methods return a list of candidate peptide-spectrum matches (PSMs), ranked according to a scoring function. Normally the highest-scoring candidate peptide is considered as the best match for each spectrum. However, these best matches do not necessary always indicate the true matches. Identifying a full-length correct peptide by peptide identification tools is crucial, and we do not want to assign a spectrum to the peptide which is not expressed in the given biological sample. Therefore in this paper, we present a new approach to improving the previous ordering/ranking of the PSMs, aiming at bringing the correct PSM for spectrum ahead of all the incorrect ones for the same spectrum. We develop a new method called GP-PSM-rank, which employs genetic programming (GP) to learn a ranking function by combining different feature functions that measure the quality of PSMs from different perspectives. We compare GP-PSM-rank with SVM-rank. The results show that GP-PSM-rank outperforms SVM-rank in terms of the number of identified peptides which are true matches. On a validation dataset with 120 spectra, the proposed method is used as the post processing step on the results of peptide identifications by two de novo sequencing algorithms. GP-PSM-rank improves the results of both de novo methods in terms of identifying the true matches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixihaha完成签到,获得积分10
1秒前
谷粱瑾瑜完成签到,获得积分10
2秒前
谷粱瑾瑜发布了新的文献求助10
6秒前
安安完成签到,获得积分10
6秒前
星辰大海应助yang采纳,获得10
8秒前
汉堡包应助nenoaowu采纳,获得10
9秒前
白熊完成签到,获得积分10
9秒前
充电宝应助bian采纳,获得10
9秒前
澡雪完成签到,获得积分10
10秒前
10秒前
11秒前
want_top_journal完成签到,获得积分10
11秒前
研友_VZG7GZ应助《子非鱼》采纳,获得10
11秒前
Excalibur发布了新的文献求助30
12秒前
12秒前
黄暹之完成签到,获得积分10
12秒前
上官若男应助刻苦大侠采纳,获得10
12秒前
13秒前
14秒前
ggg发布了新的文献求助10
14秒前
言非离完成签到,获得积分10
14秒前
猩猿鸡发布了新的文献求助10
15秒前
泡芙发布了新的文献求助10
16秒前
16秒前
躺平不摆烂完成签到,获得积分10
17秒前
宋映梦发布了新的文献求助10
18秒前
科目三应助柏铸海采纳,获得10
18秒前
芒go发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
研友_85YJY8完成签到,获得积分10
19秒前
19秒前
20秒前
慕辰发布了新的文献求助10
21秒前
bian完成签到,获得积分20
21秒前
薛不会完成签到,获得积分10
21秒前
愉快代珊发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377