Improving Prediction Performance Using Hierarchical Analysis of Real-Time Data: A Sepsis Case Study

败血症 全身炎症反应综合征 医学 计算机科学 重症监护医学 机器学习 队列 数据挖掘 内科学
作者
Franco van Wyk,Anahita Khojandi,Rishikesan Kamaleswaran
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 978-986 被引量:38
标识
DOI:10.1109/jbhi.2019.2894570
摘要

This paper presents a novel method for hierarchical analysis of machine learning algorithms to improve predictions of at risk patients, thus further enabling prompt therapy. Specifically, we develop a multi-layer machine learning approach to analyze continuous, high-frequency data. We illustrate the capabilities of this approach for early identification of patients at risk of sepsis, a potentially life-threatening complication of an infection, using highfrequency (minute-by-minute) physiological data collected from bedside monitors. In our analysis of a cohort of 586 patients, the model obtained from analyzing the output of a previously developed sepsis prediction model resulted in improved outcomes. Specifically, the original model failed to predict 11.76 ± 4.26% of sepsis patients earlier than Systemic Inflammatory Response Syndrome (SIRS) criteria, commonly used to identify patients at risk for rapid physiological deterioration resulting from sepsis. In contrast, the multi-layer model only failed to predict 3.21 ± 3.11% of sepsis patients earlier than SIRS. In addition, sepsis patients were predicted on average 204.87 ± 7.90 minutes earlier than SIRS criteria using the multi-layer model, which can potentially help reduce mortality and morbidity if implemented in the ICU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
其醉完成签到,获得积分10
1秒前
咸鸭蛋完成签到 ,获得积分10
1秒前
JIN发布了新的文献求助10
1秒前
无花果应助Evander采纳,获得10
1秒前
赘婿应助Sword采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
ziptip发布了新的文献求助10
2秒前
3秒前
Bowen完成签到,获得积分10
3秒前
4秒前
4秒前
慕青应助魄魄olm采纳,获得10
4秒前
木木发布了新的文献求助10
5秒前
科研通AI6应助天才玩家H采纳,获得20
5秒前
Uu发布了新的文献求助10
5秒前
科研通AI6应助未雨采纳,获得10
5秒前
今后应助wuyy采纳,获得10
7秒前
8秒前
8秒前
8秒前
于跃发布了新的文献求助10
9秒前
Xx完成签到 ,获得积分10
9秒前
歪比巴卜发布了新的文献求助20
9秒前
10秒前
WA完成签到,获得积分10
10秒前
10秒前
10秒前
念梦发布了新的文献求助10
10秒前
11秒前
隐形曼青应助一颗小花生采纳,获得10
12秒前
濯枝雨完成签到,获得积分10
12秒前
artoria完成签到,获得积分10
12秒前
科研通AI2S应助Z赵采纳,获得10
12秒前
12秒前
刘小姐完成签到,获得积分10
12秒前
酷波er应助danielsong采纳,获得10
12秒前
12秒前
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553