神经科学
突触后电位
突触
突触可塑性
突触发生
生物
心理学
生物化学
受体
作者
Shadab Batool,Hussain Raza,Jawwad Zaidi,Saba Riaz,Sean Hasan,Naweed I. Syed
标识
DOI:10.1152/jn.00833.2018
摘要
The precise patterns of neuronal assembly during development determine all functional outputs of a nervous system; these may range from simple reflexes to learning, memory, cognition, etc. To understand how brain functions and how best to repair it after injury, disease, or trauma, it is imperative that we first seek to define fundamental steps mediating this neuronal assembly. To acquire the sophisticated ensemble of highly specialized networks seen in a mature brain, all proliferated and migrated neurons must extend their axonal and dendritic processes toward targets, which are often located at some distance. Upon contact with potential partners, neurons must undergo dramatic structural changes to become either a pre- or a postsynaptic neuron. This connectivity is cemented through specialized structures termed synapses. Both structurally and functionally, the newly formed synapses are, however, not static as they undergo consistent changes in order for an animal to meet its behavioral needs in a changing environment. These changes may be either in the form of new synapses or an enhancement of their synaptic efficacy, referred to as synaptic plasticity. Thus, synapse formation is not restricted to neurodevelopment; it is a process that remains active throughout life. As the brain ages, either the lack of neuronal activity or cell death render synapses dysfunctional, thus giving rise to neurodegenerative disorders. This review seeks to highlight salient steps that are involved in a neuron’s journey, starting with the establishment, maturation, and consolidation of synapses; we particularly focus on identifying key players involved in the synaptogenic program. We hope that this endeavor will not only help the beginners in this field to understand how brain networks are assembled in the first place but also shed light on various neurodevelopmental, neurological, neurodegenerative, and neuropsychiatric disorders that involve synaptic inactivity or dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI