Prediction of Drug-Disease Associations and Their Effects by Signed Network-Based Nonnegative Matrix Factorization

子网 疾病 非负矩阵分解 药品 药物重新定位 联想(心理学) 矩阵分解 二部图 计算机科学 人工智能 医学 药理学 理论计算机科学 心理学 内科学 图形 特征向量 物理 计算机安全 量子力学 心理治疗师
作者
Wen Zhang,Feng Huang,Xiang Yue,Xiaoting Lu,Weitai Yang,Zhishuai Li,Feng Liu
出处
期刊:Bioinformatics and Biomedicine 被引量:8
标识
DOI:10.1109/bibm.2018.8621191
摘要

Predicting drug-disease associations using computational methods benefits drug repositioning. Drug-disease associations are events that drugs exert effects on diseases, there are different effects about drug-disease associations. For example, drug-disease associations are annotated as therapeutic or marker/mechanism (non-therapeutic) in Comparative Toxicogenomics database (CTD). However, existing association prediction methods ignore effects that drugs exert on diseases. In this paper, we propose a signed network-based nonnegative matrix factorization method (SNNMF) to predict drug-disease associations and their effects. First, drug-disease associations are represented as a signed bipartite network with two types of links for therapeutic effects and non-therapeutic effects. After decomposing the network into two subnetworks, SNNMF aims to approximate the association matrix of each subnetwork by two nonnegative matrices, which are low-dimensional latent representations for drugs and diseases respectively, and diseases in two subnetworks share the same latent representations. In the computational experiments, SNNMF performs well in predicting effects of drug-disease associations. Moreover, SNNMF accurately predicts drug-disease associations and outperforms existing association prediction methods. Case studies show that SNNMF helps to find out novel drug-disease associations that are not included in CTD, and simultaneously predicts their therapeutic effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
某人金发布了新的文献求助10
1秒前
Hello应助徐biao采纳,获得10
1秒前
神说应助拉长的铅笔采纳,获得10
3秒前
科研通AI5应助Cloud采纳,获得10
3秒前
sam发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
YNHN发布了新的文献求助50
6秒前
qingfeng发布了新的文献求助10
6秒前
7秒前
ding应助张张采纳,获得30
7秒前
7秒前
大模型应助Yue采纳,获得10
7秒前
可爱的函函应助馀翀采纳,获得10
7秒前
搜集达人应助wangrch6采纳,获得10
8秒前
心灵美秋灵关注了科研通微信公众号
8秒前
8秒前
orixero应助casset采纳,获得10
8秒前
9秒前
暴躁的静芙完成签到,获得积分10
9秒前
9秒前
oaoalaa完成签到 ,获得积分10
9秒前
脑洞疼应助欢_211采纳,获得10
9秒前
sam完成签到,获得积分10
10秒前
CodeCraft应助zddhhh采纳,获得10
11秒前
11秒前
11秒前
婕婕方完成签到,获得积分10
12秒前
NexusExplorer应助kinn采纳,获得10
12秒前
小二郎应助duf采纳,获得10
12秒前
ekswai完成签到,获得积分10
12秒前
12秒前
Xin完成签到,获得积分10
12秒前
标致书本发布了新的文献求助10
12秒前
某人金完成签到,获得积分10
13秒前
胜天半子完成签到,获得积分10
13秒前
柒柒_BX发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399