A robust classification algorithm for separation of construction waste using NIR hyperspectral system

高光谱成像 正确性 计算机科学 稳健性(进化) 小波 规范化(社会学) 人工智能 小波变换 工程类 模式识别(心理学) 算法 人类学 生物化学 基因 社会学 化学
作者
Wen Xiao,Jianhong Yang,Huaiying Fang,Jiangteng Zhuang,Yuedong Ku
出处
期刊:Waste Management [Elsevier]
卷期号:90: 1-9 被引量:37
标识
DOI:10.1016/j.wasman.2019.04.036
摘要

To improve the utilization rate of construction waste, reduce processing costs, and improve processing efficiency, we used near-infrared hyperspectral technology to extract and classify typical construction waste types. We proposed the pythagorean wavelet transform (PWT) to get the characteristic reflectivity to avoid the redundancy of hyperspectral data. Compared with the results from the wavelet transform (WT), we were able to retain more detailed information, and we observed the enhancement of differences between different species. To adapt to the complex conditions present in actual situations and to improve our ability to distinguish similar spectrum, we extracted, in addition to the characteristic reflectivity, four potential features. After classified verification, we found out that the first derivative and the intrinsic mode function (IMF) were effective features. At the same time the random forest (RF) algorithm was best at identifying trend-features, and the extreme learning machine (ELM) was better at identifying amplitude-features. We proposed a complementary troubleshooting (CT) method for the online identification of construction waste. After using the ELM to identify the characteristic reflectivity, the RF was used to identify first derivative for supplemental verification, which reduced errors due to working conditions and improved the overall model robustness and correctness. The accuracy of proposed method can reach 100% in identifying 180 samples with 6 types including woods, plastics, bricks, concretes, rubbers and black bricks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
慕青应助没有名称采纳,获得10
1秒前
HEIKU应助聪慧的机器猫采纳,获得10
1秒前
拼搏翠桃发布了新的文献求助10
2秒前
8个老登发布了新的文献求助10
3秒前
3秒前
hhy完成签到,获得积分10
3秒前
孙一雯发布了新的文献求助30
4秒前
4秒前
Xxxnnian完成签到,获得积分20
5秒前
fancy发布了新的文献求助10
5秒前
apple完成签到,获得积分10
5秒前
5秒前
oldlee发布了新的文献求助10
6秒前
斜杠武发布了新的文献求助10
6秒前
毕业就好发布了新的文献求助10
6秒前
wusanlinshi完成签到,获得积分20
7秒前
娜行发布了新的文献求助10
7秒前
大雄完成签到,获得积分10
7秒前
kai发布了新的文献求助10
8秒前
科研通AI5应助老西瓜采纳,获得10
8秒前
核弹完成签到 ,获得积分10
8秒前
kevin完成签到,获得积分10
9秒前
Chem is try发布了新的文献求助10
9秒前
皖医梁朝伟完成签到 ,获得积分10
9秒前
汉堡包应助野性的南蕾采纳,获得10
9秒前
9秒前
便宜小师傅完成签到 ,获得积分10
10秒前
霏冉完成签到,获得积分10
10秒前
11秒前
Grayball应助包容的剑采纳,获得10
11秒前
董小天天完成签到,获得积分10
11秒前
11秒前
华仔应助qym采纳,获得10
11秒前
琅琊为刃完成签到,获得积分10
12秒前
酷波er应助hhh采纳,获得10
12秒前
12秒前
小巧的香氛完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672