A robust classification algorithm for separation of construction waste using NIR hyperspectral system

高光谱成像 正确性 计算机科学 稳健性(进化) 小波 规范化(社会学) 人工智能 小波变换 工程类 模式识别(心理学) 算法 人类学 生物化学 基因 社会学 化学
作者
Wen Xiao,Jianhong Yang,Huaiying Fang,Jiangteng Zhuang,Yuedong Ku
出处
期刊:Waste Management [Elsevier]
卷期号:90: 1-9 被引量:37
标识
DOI:10.1016/j.wasman.2019.04.036
摘要

To improve the utilization rate of construction waste, reduce processing costs, and improve processing efficiency, we used near-infrared hyperspectral technology to extract and classify typical construction waste types. We proposed the pythagorean wavelet transform (PWT) to get the characteristic reflectivity to avoid the redundancy of hyperspectral data. Compared with the results from the wavelet transform (WT), we were able to retain more detailed information, and we observed the enhancement of differences between different species. To adapt to the complex conditions present in actual situations and to improve our ability to distinguish similar spectrum, we extracted, in addition to the characteristic reflectivity, four potential features. After classified verification, we found out that the first derivative and the intrinsic mode function (IMF) were effective features. At the same time the random forest (RF) algorithm was best at identifying trend-features, and the extreme learning machine (ELM) was better at identifying amplitude-features. We proposed a complementary troubleshooting (CT) method for the online identification of construction waste. After using the ELM to identify the characteristic reflectivity, the RF was used to identify first derivative for supplemental verification, which reduced errors due to working conditions and improved the overall model robustness and correctness. The accuracy of proposed method can reach 100% in identifying 180 samples with 6 types including woods, plastics, bricks, concretes, rubbers and black bricks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助优美巧曼采纳,获得10
刚刚
充电宝应助Gen_cexon采纳,获得20
1秒前
咕噜噜完成签到,获得积分10
1秒前
爱吃烤苕皮完成签到,获得积分10
3秒前
5秒前
葵葵完成签到,获得积分10
5秒前
Gryphon完成签到,获得积分10
11秒前
嫁个养熊猫的完成签到 ,获得积分10
13秒前
14秒前
14秒前
英俊的铭应助单薄的咖啡采纳,获得10
26秒前
30秒前
Gen_cexon给Gen_cexon的求助进行了留言
30秒前
123完成签到,获得积分10
31秒前
清爽的元灵完成签到 ,获得积分10
32秒前
tangxf921发布了新的文献求助20
33秒前
善学以致用应助自转无风采纳,获得10
38秒前
o我不是高手完成签到 ,获得积分10
39秒前
40秒前
所所应助xl采纳,获得10
40秒前
爱静静应助Six_seven采纳,获得10
40秒前
maomaozi发布了新的文献求助10
40秒前
41秒前
科研通AI2S应助wenjian采纳,获得10
42秒前
涤生完成签到,获得积分20
43秒前
zyq应助joyboysimba采纳,获得10
44秒前
647完成签到,获得积分10
44秒前
cc_huixianxie完成签到,获得积分10
45秒前
CipherSage应助talpionchen采纳,获得10
45秒前
涤生发布了新的文献求助10
45秒前
46秒前
佳音发布了新的文献求助10
46秒前
Fred Guan应助安玖采纳,获得10
47秒前
Six_seven完成签到,获得积分10
47秒前
雯雯呀完成签到,获得积分10
47秒前
ljycasey完成签到,获得积分10
48秒前
Ivy完成签到,获得积分10
49秒前
jacs111完成签到,获得积分10
49秒前
50秒前
一与余完成签到,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023