Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness

相对生物效应 质子 质子疗法 蒙特卡罗方法 布拉格峰 半径 线性能量转移 物理 能量(信号处理) 计算物理学 谱线 核医学 核物理学 辐照 医学 统计 数学 计算机安全 量子力学 计算机科学 天文
作者
Mark Newpower,Darshana Patel,Lawrence F. Bronk,Fada Guan,Pankaj Chaudhary,Stephen J. McMahon,Kevin M. Prise,Giuseppe Schettino,David R. Grosshans,Radhe Mohan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:104 (2): 316-324 被引量:30
标识
DOI:10.1016/j.ijrobp.2019.01.094
摘要

Purpose We introduce a methodology to calculate the microdosimetric quantity dose-mean lineal energy for input into the microdosimetric kinetic model (MKM) to model the relative biological effectiveness (RBE) of proton irradiation experiments. Methods and Materials The data from 7 individual proton RBE experiments were included in this study. In each experiment, the RBE at several points along the Bragg curve was measured. Monte Carlo simulations to calculate the lineal energy probability density function of 172 different proton energies were carried out with use of Geant4 DNA. We calculated the fluence-weighted lineal energy probability density function ( f w ( y ) ) , based on the proton energy spectra calculated through Monte Carlo at each experimental depth, calculated the dose-mean lineal energy y D ¯ for input into the MKM, and then computed the RBE. The radius of the domain (rd) was varied to reach the best agreement between the MKM-predicted RBE and experimental RBE. A generic RBE model as a function of dose-averaged linear energy transfer (LETD) with 1 fitting parameter was presented and fit to the experimental RBE data as well to facilitate a comparison to the MKM. Results Both the MKM and LETD-based models modeled the RBE from experiments well. Values for rd were similar to those of other cell lines under proton irradiation that were modeled with the MKM. Analysis of the performance of each model revealed that neither model was clearly superior to the other. Conclusions Our 3 key accomplishments include the following: (1) We developed a method that uses the proton energy spectra and lineal energy distributions of those protons to calculate dose-mean lineal energy. (2) We demonstrated that our application of the MKM provides theoretical validation of proton irradiation experiments that show that RBE is significantly greater than 1.1. (3) We showed that there is no clear evidence that the MKM is better than LETD-based RBE models. We introduce a methodology to calculate the microdosimetric quantity dose-mean lineal energy for input into the microdosimetric kinetic model (MKM) to model the relative biological effectiveness (RBE) of proton irradiation experiments. The data from 7 individual proton RBE experiments were included in this study. In each experiment, the RBE at several points along the Bragg curve was measured. Monte Carlo simulations to calculate the lineal energy probability density function of 172 different proton energies were carried out with use of Geant4 DNA. We calculated the fluence-weighted lineal energy probability density function ( f w ( y ) ) , based on the proton energy spectra calculated through Monte Carlo at each experimental depth, calculated the dose-mean lineal energy y D ¯ for input into the MKM, and then computed the RBE. The radius of the domain (rd) was varied to reach the best agreement between the MKM-predicted RBE and experimental RBE. A generic RBE model as a function of dose-averaged linear energy transfer (LETD) with 1 fitting parameter was presented and fit to the experimental RBE data as well to facilitate a comparison to the MKM. Both the MKM and LETD-based models modeled the RBE from experiments well. Values for rd were similar to those of other cell lines under proton irradiation that were modeled with the MKM. Analysis of the performance of each model revealed that neither model was clearly superior to the other. Our 3 key accomplishments include the following: (1) We developed a method that uses the proton energy spectra and lineal energy distributions of those protons to calculate dose-mean lineal energy. (2) We demonstrated that our application of the MKM provides theoretical validation of proton irradiation experiments that show that RBE is significantly greater than 1.1. (3) We showed that there is no clear evidence that the MKM is better than LETD-based RBE models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天只会睡大觉完成签到 ,获得积分10
2秒前
隐形荟完成签到 ,获得积分10
6秒前
Lee完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
蔡从安发布了新的文献求助10
31秒前
丫丫完成签到 ,获得积分10
31秒前
点点完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
38秒前
和平使命应助科研通管家采纳,获得10
41秒前
小明完成签到 ,获得积分10
41秒前
whitepiece完成签到,获得积分10
42秒前
105完成签到 ,获得积分10
43秒前
俊逸吐司完成签到 ,获得积分10
45秒前
John完成签到 ,获得积分10
45秒前
50秒前
Song完成签到 ,获得积分10
53秒前
蔡从安发布了新的文献求助10
55秒前
默默莫莫完成签到 ,获得积分10
56秒前
温如军完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
蚊蚊爱读书应助蔡从安采纳,获得10
1分钟前
mmd完成签到 ,获得积分10
1分钟前
好运连连完成签到 ,获得积分10
1分钟前
zhangkx23完成签到,获得积分10
1分钟前
Lyw完成签到 ,获得积分10
1分钟前
sure完成签到 ,获得积分10
1分钟前
殷勤的紫槐完成签到,获得积分0
1分钟前
李天浩完成签到 ,获得积分10
1分钟前
myq完成签到 ,获得积分10
1分钟前
一见憘完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
1分钟前
藏锋完成签到 ,获得积分10
1分钟前
酷炫觅双完成签到 ,获得积分10
1分钟前
暖羊羊Y完成签到 ,获得积分10
1分钟前
1分钟前
傲娇书易应助davedavedave采纳,获得20
1分钟前
哥哥发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575