西妥因1
间充质干细胞
白藜芦醇
化学
运行x2
去卵巢大鼠
锡尔图因
激活剂(遗传学)
内分泌学
衰老
癌症研究
细胞生物学
内科学
生物
成骨细胞
乙酰化
下调和上调
医学
生物化学
体外
基因
雌激素
作者
Hua Wang,Zixuan Hu,Jun Wu,Yukun Mei,Qian Zhang,Hengwei Zhang,Dengshun Miao,Wen Sun
摘要
ABSTRACT Sirtuin 1 (Sirt1), a protein deacetylase, is a novel target for bone metabolism. To investigate whether overexpression of Sirt1 in mandibular mesenchymal stem cells (M-MSCs) increased alveolar bone mass in vivo, we generated Sirt1 transgenic mice (Sirt1TG), with Sirt1 gene expression driven by the Prx1 gene, which represents the mesenchymal lineage. Our results demonstrated that overexpression of Sirt1 in M-MSCs increased the alveolar bone volume in 1-month-old, 9-month-old, and 18-month-old Sirt1TG mice compared with age-matched wild-type (WT) mice, and in ovariectomized Sirt1TG mice compared with ovariectomized WT mice by stimulating M-MSC differentiation into osteoblasts. Treatment with resveratrol, a Sirt1 activator, increased Sirt1 binding with Bmi1 and reduced Bmi1 acetylation in a dose-dependent manner demonstrated in M-MSC cultures. Both treatment with resveratrol in M-MSC cultures and overexpressed Sirt1 in M-MSCs ex vivo cultures increased nuclear translocation of Bmi1. Furthermore, we demonstrated that deletion of Bmi1 blocked the increased alveolar bone volume in Sirt1TG mice. The Sirt1 activator resveratrol inhibited human MSC senescence and promoted their differentiation into osteoblasts, which were associated with upregulating the expression levels of Sirt1 and nuclear translocation of Bmi1. The present results suggested that Sirt1 promotes MSC proliferation and osteogenic differentiation, inhibits MSC senescence to increase alveolar bone volume by promoting the deacetylation and nuclear translocation of Bmi1. Thus, our study elucidated the mechanism by which Sirt1 increases alveolar bone mass, and these findings are important for the clinical application of the Sirt1 activator resveratrol for the promotion of alveolar bone formation and prevention of alveolar bone loss. © 2019 American Society for Bone and Mineral Research.
科研通智能强力驱动
Strongly Powered by AbleSci AI