A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification

计算机科学 卷积神经网络 人工智能 特征(语言学) 特征学习 模式识别(心理学) 分类器(UML) 特征提取 代表(政治) 杠杆(统计) 政治学 语言学 政治 哲学 法学
作者
Xiaoqiang Lu,Hao Sun,Xiangtao Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (10): 7894-7906 被引量:173
标识
DOI:10.1109/tgrs.2019.2917161
摘要

Remote sensing scene classification (RSSC) refers to inferring semantic labels based on the content of the remote sensing scenes. Recently, most works take the pretrained convolutional neural network (CNN) as the feature extractor to build a scene representation for RSSC. The activations in different layers of CNN (named intermediate features) contain different spatial and semantic information. Recent works demonstrate that aggregating intermediate features into a scene representation can significantly improve the classification accuracy for RSSC. However, the intermediate features are aggregated by some unsupervised feature encoding methods (e.g., Bag-of-Visual-Words). Little attention has been paid to explore the information of semantic labels for the feature aggregation. In this paper, in order to explore the semantic label information, an end-to-end feature aggregation CNN (FACNN) is proposed to learn a scene representation for RSSC. In FACNN, a supervised convolutional features' encoding module and a progressive aggregation strategy are proposed to leverage the semantic label information to aggregate the intermediate features. The FACNN integrates the feature learning, feature aggregation, and classifier into a unified end-to-end framework for joint training. In FACNN, the scene representation is learned by considering the information of semantic labels, which can result in better performance for RSSC. Extensive experiments on AID, UC-Merged, and WHU-RS19 databases demonstrate that FACNN performs better than several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
wyr完成签到,获得积分10
2秒前
哦啊啊发布了新的文献求助10
2秒前
kkk发布了新的文献求助10
3秒前
3秒前
katsuras发布了新的文献求助10
3秒前
郮东完成签到 ,获得积分10
3秒前
3秒前
gcsun完成签到,获得积分10
4秒前
快乐的书雁完成签到,获得积分10
4秒前
开朗雪糕发布了新的文献求助10
5秒前
小熊熊完成签到,获得积分10
5秒前
shane发布了新的文献求助10
6秒前
Bean发布了新的文献求助10
6秒前
烂漫猫咪发布了新的文献求助10
9秒前
9秒前
爆米花应助katsuras采纳,获得10
10秒前
noss发布了新的文献求助10
10秒前
peterlee完成签到,获得积分10
12秒前
胖虎不胖完成签到,获得积分10
13秒前
NexusExplorer应助zSmart采纳,获得10
13秒前
xixihaha发布了新的文献求助10
13秒前
14秒前
就这完成签到,获得积分10
14秒前
kai_完成签到,获得积分10
15秒前
李健的小迷弟应助新司机采纳,获得10
15秒前
1230完成签到 ,获得积分10
15秒前
张恒完成签到,获得积分10
16秒前
若E18完成签到,获得积分10
17秒前
NexusExplorer应助Eason小川采纳,获得10
17秒前
zsj完成签到 ,获得积分10
17秒前
roaring发布了新的文献求助10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451