A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification

计算机科学 卷积神经网络 人工智能 特征(语言学) 特征学习 模式识别(心理学) 分类器(UML) 特征提取 代表(政治) 杠杆(统计) 政治学 语言学 政治 哲学 法学
作者
Xiaoqiang Lu,Hao Sun,Xiangtao Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (10): 7894-7906 被引量:173
标识
DOI:10.1109/tgrs.2019.2917161
摘要

Remote sensing scene classification (RSSC) refers to inferring semantic labels based on the content of the remote sensing scenes. Recently, most works take the pretrained convolutional neural network (CNN) as the feature extractor to build a scene representation for RSSC. The activations in different layers of CNN (named intermediate features) contain different spatial and semantic information. Recent works demonstrate that aggregating intermediate features into a scene representation can significantly improve the classification accuracy for RSSC. However, the intermediate features are aggregated by some unsupervised feature encoding methods (e.g., Bag-of-Visual-Words). Little attention has been paid to explore the information of semantic labels for the feature aggregation. In this paper, in order to explore the semantic label information, an end-to-end feature aggregation CNN (FACNN) is proposed to learn a scene representation for RSSC. In FACNN, a supervised convolutional features' encoding module and a progressive aggregation strategy are proposed to leverage the semantic label information to aggregate the intermediate features. The FACNN integrates the feature learning, feature aggregation, and classifier into a unified end-to-end framework for joint training. In FACNN, the scene representation is learned by considering the information of semantic labels, which can result in better performance for RSSC. Extensive experiments on AID, UC-Merged, and WHU-RS19 databases demonstrate that FACNN performs better than several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特的追命应助neveruary采纳,获得30
1秒前
雪松发布了新的文献求助20
1秒前
白小白完成签到,获得积分10
1秒前
付研琪发布了新的文献求助10
2秒前
dew应助fzzf采纳,获得10
2秒前
科研仙人发布了新的文献求助10
3秒前
尽舜尧完成签到,获得积分10
3秒前
正直听芹完成签到,获得积分10
4秒前
美满的紫伊完成签到,获得积分10
4秒前
5秒前
Niuniu发布了新的文献求助10
6秒前
水星完成签到 ,获得积分10
6秒前
领导范儿应助生动的水池采纳,获得10
6秒前
6秒前
Akim应助爱学术的小冷采纳,获得10
6秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
贺兰觿完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
王明磊完成签到 ,获得积分10
11秒前
领导范儿应助别说话采纳,获得10
11秒前
12秒前
25上岸完成签到,获得积分10
12秒前
元谷雪发布了新的文献求助10
13秒前
13秒前
王松桐完成签到,获得积分10
13秒前
Fliu完成签到,获得积分10
14秒前
14秒前
14秒前
77发布了新的文献求助10
14秒前
Nin完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695408
求助须知:如何正确求助?哪些是违规求助? 5101761
关于积分的说明 15216105
捐赠科研通 4851704
什么是DOI,文献DOI怎么找? 2602676
邀请新用户注册赠送积分活动 1554320
关于科研通互助平台的介绍 1512360