A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification

计算机科学 卷积神经网络 人工智能 特征(语言学) 特征学习 模式识别(心理学) 分类器(UML) 特征提取 代表(政治) 杠杆(统计) 哲学 语言学 政治 政治学 法学
作者
Xiaoqiang Lu,Hao Sun,Xiangtao Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (10): 7894-7906 被引量:173
标识
DOI:10.1109/tgrs.2019.2917161
摘要

Remote sensing scene classification (RSSC) refers to inferring semantic labels based on the content of the remote sensing scenes. Recently, most works take the pretrained convolutional neural network (CNN) as the feature extractor to build a scene representation for RSSC. The activations in different layers of CNN (named intermediate features) contain different spatial and semantic information. Recent works demonstrate that aggregating intermediate features into a scene representation can significantly improve the classification accuracy for RSSC. However, the intermediate features are aggregated by some unsupervised feature encoding methods (e.g., Bag-of-Visual-Words). Little attention has been paid to explore the information of semantic labels for the feature aggregation. In this paper, in order to explore the semantic label information, an end-to-end feature aggregation CNN (FACNN) is proposed to learn a scene representation for RSSC. In FACNN, a supervised convolutional features' encoding module and a progressive aggregation strategy are proposed to leverage the semantic label information to aggregate the intermediate features. The FACNN integrates the feature learning, feature aggregation, and classifier into a unified end-to-end framework for joint training. In FACNN, the scene representation is learned by considering the information of semantic labels, which can result in better performance for RSSC. Extensive experiments on AID, UC-Merged, and WHU-RS19 databases demonstrate that FACNN performs better than several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无悔呀发布了新的文献求助10
刚刚
1秒前
君君发布了新的文献求助10
1秒前
Yang完成签到,获得积分10
2秒前
风雨完成签到,获得积分10
2秒前
2秒前
3秒前
彭于晏应助小西采纳,获得30
3秒前
可爱的函函应助布布采纳,获得10
4秒前
5秒前
轩辕德地发布了新的文献求助10
5秒前
nine发布了新的文献求助30
5秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
6秒前
JamesPei应助小敦采纳,获得10
6秒前
今非发布了新的文献求助10
6秒前
李健的小迷弟应助通~采纳,获得30
6秒前
6秒前
6秒前
fanfan44390发布了新的文献求助10
6秒前
Zhang完成签到,获得积分10
7秒前
小二郎应助小田采纳,获得10
8秒前
8秒前
隐形曼青应助liike采纳,获得10
8秒前
phd发布了新的文献求助10
8秒前
8秒前
dingdong发布了新的文献求助30
8秒前
Orange应助清秀的语山采纳,获得50
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
9秒前
大李包完成签到,获得积分10
9秒前
思源应助费城青年采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
帮助我的人永远不死完成签到,获得积分20
9秒前
无花果应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794