A Feature Aggregation Convolutional Neural Network for Remote Sensing Scene Classification

计算机科学 卷积神经网络 人工智能 特征(语言学) 特征学习 模式识别(心理学) 分类器(UML) 特征提取 代表(政治) 杠杆(统计) 政治学 语言学 政治 哲学 法学
作者
Xiaoqiang Lu,Hao Sun,Xiangtao Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (10): 7894-7906 被引量:173
标识
DOI:10.1109/tgrs.2019.2917161
摘要

Remote sensing scene classification (RSSC) refers to inferring semantic labels based on the content of the remote sensing scenes. Recently, most works take the pretrained convolutional neural network (CNN) as the feature extractor to build a scene representation for RSSC. The activations in different layers of CNN (named intermediate features) contain different spatial and semantic information. Recent works demonstrate that aggregating intermediate features into a scene representation can significantly improve the classification accuracy for RSSC. However, the intermediate features are aggregated by some unsupervised feature encoding methods (e.g., Bag-of-Visual-Words). Little attention has been paid to explore the information of semantic labels for the feature aggregation. In this paper, in order to explore the semantic label information, an end-to-end feature aggregation CNN (FACNN) is proposed to learn a scene representation for RSSC. In FACNN, a supervised convolutional features' encoding module and a progressive aggregation strategy are proposed to leverage the semantic label information to aggregate the intermediate features. The FACNN integrates the feature learning, feature aggregation, and classifier into a unified end-to-end framework for joint training. In FACNN, the scene representation is learned by considering the information of semantic labels, which can result in better performance for RSSC. Extensive experiments on AID, UC-Merged, and WHU-RS19 databases demonstrate that FACNN performs better than several state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃发布了新的文献求助30
1秒前
一线西风发布了新的文献求助10
1秒前
nen发布了新的文献求助10
2秒前
在水一方应助野火197采纳,获得10
2秒前
qduxl完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
慕青应助帆帆采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
灵巧的新烟完成签到,获得积分10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
小蘑菇应助123采纳,获得10
8秒前
传奇3应助大力的图图采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
fufu完成签到 ,获得积分10
10秒前
10秒前
Alex完成签到,获得积分10
11秒前
orixero应助鸽子5359采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778529
求助须知:如何正确求助?哪些是违规求助? 5642377
关于积分的说明 15449784
捐赠科研通 4910209
什么是DOI,文献DOI怎么找? 2642497
邀请新用户注册赠送积分活动 1590273
关于科研通互助平台的介绍 1544622