Probability mapping of soil thickness by random survival forest at a national scale

自举(财务) 数字土壤制图 环境科学 比例(比率) 土壤科学 土壤水分 土壤图 统计 土层 随机森林 土壤测量 水文学(农业) 数学 地质学 计算机科学 地图学 地理 计量经济学 岩土工程 机器学习
作者
Songchao Chen,Vera Leatitia Mulder,Manuel Martin,Christian Walter,Marine Lacoste,Anne C. Richer-de-Forges,Nicolas Saby,Thomas Loiseau,Bifeng Hu,Dominique Arrouays
出处
期刊:Geoderma [Elsevier]
卷期号:344: 184-194 被引量:32
标识
DOI:10.1016/j.geoderma.2019.03.016
摘要

Soil thickness (ST) is a crucial factor in earth surface modelling and soil storage capacity calculations (e.g., available water capacity and carbon stocks). However, the observed depths recorded in soil information systems for some profiles are often less than the actual ST (i.e., right censored data). The use of such data will negatively affect model and map accuracy, yet few studies have been done to resolve this issue or propose methods to correct for right censored data. Therefore, this work demonstrates how right censored data can be accounted for in the ST modelling of mainland France. We propose the use of Random Survival Forest (RSF) for ST probability mapping within a Digital Soil Mapping framework. Among 2109 sites of the French Soil Monitoring Network, 1089 observed STs were defined as being right censored. Using RSF, the probability of exceeding a given depth was modelled using freely available spatial data representing the main soil-forming factors. Subsequently, the models were extrapolated to the full spatial extent of mainland France. As examples, we produced maps showing the probability of exceeding the thickness of each GlobalSoilMap standard depth: 5, 15, 30, 60, 100, and 200 cm. In addition, a bootstrapping approach was used to assess the 90% confidence intervals. Our results showed that RSF was able to correct for right censored data entries occurring within a given dataset. RSF was more reliable for thin (0.3 m) and thick soils (1 to 2 m), as they performed better (overall accuracy from 0.793 to 0.989) than soils with a thickness between 0.3 and 1 m. This study provides a new approach for modelling right censored soil information. Moreover, RSF can produce probability maps at any depth less than the maximum depth of the calibration data, which is of great value for designing additional sampling campaigns and decision making in geotechnical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼凡旋完成签到,获得积分10
1秒前
韩邹光完成签到,获得积分10
3秒前
xg发布了新的文献求助10
3秒前
4秒前
dktrrrr完成签到,获得积分10
4秒前
季生完成签到,获得积分10
7秒前
徐徐完成签到,获得积分10
7秒前
8秒前
8秒前
haku完成签到,获得积分10
10秒前
可爱的函函应助laodie采纳,获得10
12秒前
Singularity应助忆楠采纳,获得10
13秒前
14秒前
请叫我风吹麦浪应助PengHu采纳,获得30
15秒前
jjjjjj完成签到,获得积分10
15秒前
凝子老师发布了新的文献求助10
17秒前
17秒前
橙子fy16_发布了新的文献求助10
19秒前
cookie完成签到,获得积分10
19秒前
柒柒的小熊完成签到,获得积分10
20秒前
20秒前
Hello应助萌之痴痴采纳,获得10
21秒前
hahaer完成签到,获得积分10
23秒前
领导范儿应助失眠虔纹采纳,获得10
24秒前
25秒前
Owen应助凝子老师采纳,获得10
28秒前
28秒前
南宫炽滔完成签到 ,获得积分10
30秒前
30秒前
丘比特应助飞羽采纳,获得10
31秒前
沙拉发布了新的文献求助10
31秒前
32秒前
33秒前
椰子糖完成签到 ,获得积分10
34秒前
34秒前
ZHU完成签到,获得积分10
35秒前
阳阳发布了新的文献求助10
36秒前
Raymond应助雪山飞龙采纳,获得10
36秒前
kk发布了新的文献求助10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849