Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma

轮廓 医学 鼻咽癌 威尔科克森符号秩检验 放射治疗 核医学 磁共振成像 放射科 人工智能 医学物理学 内科学 计算机科学 曼惠特尼U检验 计算机图形学(图像)
作者
Li Lin,Qi Dou,Yueming Jin,Guan‐Qun Zhou,Yi-Qiang Tang,Wei-Lin Chen,Bao-An Su,Feng Liu,Changjuan Tao,Ning Jiang,Junyun Li,Ling‐Long Tang,Chuan-Miao Xie,Shao-Min Huang,Jun Ma,Pheng‐Ann Heng,Joseph Wee,Melvin L.K. Chua,Hao Chen,Ying Sun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:291 (3): 677-686 被引量:309
标识
DOI:10.1148/radiol.2019182012
摘要

Background Nasopharyngeal carcinoma (NPC) may be cured with radiation therapy. Tumor proximity to critical structures demands accuracy in tumor delineation to avoid toxicities from radiation therapy; however, tumor target contouring for head and neck radiation therapy is labor intensive and highly variable among radiation oncologists. Purpose To construct and validate an artificial intelligence (AI) contouring tool to automate primary gross tumor volume (GTV) contouring in patients with NPC. Materials and Methods In this retrospective study, MRI data sets covering the nasopharynx from 1021 patients (median age, 47 years; 751 male, 270 female) with NPC between September 2016 and September 2017 were collected and divided into training, validation, and testing cohorts of 715, 103, and 203 patients, respectively. GTV contours were delineated for 1021 patients and were defined by consensus of two experts. A three-dimensional convolutional neural network was applied to 818 training and validation MRI data sets to construct the AI tool, which was tested in 203 independent MRI data sets. Next, the AI tool was compared against eight qualified radiation oncologists in a multicenter evaluation by using a random sample of 20 test MRI examinations. The Wilcoxon matched-pairs signed rank test was used to compare the difference of Dice similarity coefficient (DSC) of pre- versus post-AI assistance. Results The AI-generated contours demonstrated a high level of accuracy when compared with ground truth contours at testing in 203 patients (DSC, 0.79; 2.0-mm difference in average surface distance). In multicenter evaluation, AI assistance improved contouring accuracy (five of eight oncologists had a higher median DSC after AI assistance; average median DSC, 0.74 vs 0.78; P < .001), reduced intra- and interobserver variation (by 36.4% and 54.5%, respectively), and reduced contouring time (by 39.4%). Conclusion The AI contouring tool improved primary gross tumor contouring accuracy of nasopharyngeal carcinoma, which could have a positive impact on tumor control and patient survival. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Chang in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Esfuerzo完成签到,获得积分10
2秒前
pluto应助芒岁采纳,获得10
2秒前
upupup发布了新的文献求助20
3秒前
打打应助韋晴采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
alan完成签到 ,获得积分10
4秒前
沐浠发布了新的文献求助10
5秒前
舒心的满天完成签到 ,获得积分10
6秒前
cyanpomelo发布了新的文献求助10
6秒前
丘比特应助若尘采纳,获得10
6秒前
7秒前
CodeCraft应助yangfeidong采纳,获得10
8秒前
chenshiyi185完成签到,获得积分10
9秒前
快乐的胖子应助三哥采纳,获得30
9秒前
11秒前
斯文钢笔完成签到 ,获得积分10
12秒前
13秒前
山雀完成签到,获得积分10
13秒前
BINGBONG关注了科研通微信公众号
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
浮游应助11采纳,获得10
17秒前
yangfeidong发布了新的文献求助10
19秒前
19秒前
20秒前
心猿应助g0123采纳,获得10
21秒前
21秒前
yuilcl发布了新的文献求助10
22秒前
wbshore发布了新的文献求助10
24秒前
24秒前
聪慧的正豪应助郑浩采纳,获得10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
orixero应助巧乐兹采纳,获得10
29秒前
瓦力文发布了新的文献求助10
29秒前
32秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
33秒前
33秒前
CipherSage应助yuilcl采纳,获得10
34秒前
香蕉觅云应助嗬娜采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941102
求助须知:如何正确求助?哪些是违规求助? 4207170
关于积分的说明 13076816
捐赠科研通 3985940
什么是DOI,文献DOI怎么找? 2182404
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110281