电极
结构稳定性
电化学
材料科学
中子衍射
过渡金属
离子
分析化学(期刊)
结晶学
化学
晶体结构
物理化学
生物化学
结构工程
工程类
色谱法
催化作用
有机化学
作者
Damian Goonetilleke,Neeraj Sharma,Wei Kong Pang,Vanessa K. Peterson,Rémi Petibon,Jing Li,J. R. Dahn
标识
DOI:10.1021/acs.chemmater.8b03525
摘要
Positive electrode materials remain a limiting factor for the energy density of lithium-ion batteries (LIBs). Improving the structural stability of these materials over a wider potential window presents an opportune path to higher energy density LIBs. Herein, operando neutron diffraction is used to elucidate the relationship between the structural evolution and electrochemical behavior for a series of Li-ion pouch cells containing Li(NixMnyCoz)O2 (x + y + z = 1) electrode chemistries. The structural stability of these electrodes during charge and discharge cycling across a wide potential window is found to be influenced by the ratio of transition-metal atoms in the material. Of the electrodes investigated in this study, the Li(Ni0.4Mn0.4Co0.2)O2 composition exhibits the smallest magnitude of structural expansion and contraction during cycling while also providing favorable structural stability at high voltage. Greater structural change was observed in electrodes with a higher Ni content, while decreasing inversely to the Ni and Co content in the positive electrode. The combination of structural and electrochemical characterization of a wide range of NMC compositions provides useful insight for the design and application of ideal electrode compositions for long-term cycling and structural stability during storage at the charged state.
科研通智能强力驱动
Strongly Powered by AbleSci AI