Designing neural networks through neuroevolution

神经进化 人工智能 计算机科学 人工神经网络
作者
Kenneth O. Stanley,Jeff Clune,Joel Lehman,Risto Miikkulainen
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (1): 24-35 被引量:584
标识
DOI:10.1038/s42256-018-0006-z
摘要

Much of recent machine learning has focused on deep learning, in which neural network weights are trained through variants of stochastic gradient descent. An alternative approach comes from the field of neuroevolution, which harnesses evolutionary algorithms to optimize neural networks, inspired by the fact that natural brains themselves are the products of an evolutionary process. Neuroevolution enables important capabilities that are typically unavailable to gradient-based approaches, including learning neural network building blocks (for example activation functions), hyperparameters, architectures and even the algorithms for learning themselves. Neuroevolution also differs from deep learning (and deep reinforcement learning) by maintaining a population of solutions during search, enabling extreme exploration and massive parallelization. Finally, because neuroevolution research has (until recently) developed largely in isolation from gradient-based neural network research, it has developed many unique and effective techniques that should be effective in other machine learning areas too. This Review looks at several key aspects of modern neuroevolution, including large-scale computing, the benefits of novelty and diversity, the power of indirect encoding, and the field’s contributions to meta-learning and architecture search. Our hope is to inspire renewed interest in the field as it meets the potential of the increasing computation available today, to highlight how many of its ideas can provide an exciting resource for inspiration and hybridization to the deep learning, deep reinforcement learning and machine learning communities, and to explain how neuroevolution could prove to be a critical tool in the long-term pursuit of artificial general intelligence. Deep neural networks have become very successful at certain machine learning tasks partly due to the widely adopted method of training called backpropagation. An alternative way to optimize neural networks is by using evolutionary algorithms, which, fuelled by the increase in computing power, offers a new range of capabilities and modes of learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
快乐小蜜蜂应助嘻嘻哈哈采纳,获得10
2秒前
3秒前
4秒前
5秒前
6秒前
英姑应助zorro3574采纳,获得10
8秒前
懵懂的远锋完成签到,获得积分10
9秒前
huier发布了新的文献求助20
9秒前
彭于晏应助Cosima采纳,获得10
9秒前
害羞的裘发布了新的文献求助10
9秒前
hiha完成签到 ,获得积分10
9秒前
wlm发布了新的文献求助10
10秒前
超超爱吃瓜完成签到,获得积分10
11秒前
冬卉发布了新的文献求助10
13秒前
文艺的曼柔完成签到,获得积分10
13秒前
Z.one发布了新的文献求助10
13秒前
pluto应助Crrr采纳,获得10
14秒前
15秒前
荼柒完成签到,获得积分10
16秒前
老头完成签到,获得积分10
17秒前
18秒前
18秒前
天上的云在偷偷看你完成签到,获得积分10
19秒前
柒柒发布了新的文献求助10
22秒前
Candice应助wlm采纳,获得10
23秒前
13完成签到,获得积分10
23秒前
24秒前
冷酷莫言发布了新的文献求助10
24秒前
晓婷婷完成签到 ,获得积分10
26秒前
爱吃猫的鱼完成签到,获得积分10
27秒前
xww发布了新的文献求助10
27秒前
Ava应助105400155采纳,获得10
29秒前
29秒前
29秒前
王九八发布了新的文献求助10
30秒前
32秒前
荼柒完成签到,获得积分10
33秒前
乐乐应助song采纳,获得10
34秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260879
求助须知:如何正确求助?哪些是违规求助? 2901937
关于积分的说明 8318293
捐赠科研通 2571697
什么是DOI,文献DOI怎么找? 1397202
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632213