Designing neural networks through neuroevolution

神经进化 人工智能 计算机科学 人工神经网络
作者
Kenneth O. Stanley,Jeff Clune,Joel Lehman,Risto Miikkulainen
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (1): 24-35 被引量:613
标识
DOI:10.1038/s42256-018-0006-z
摘要

Much of recent machine learning has focused on deep learning, in which neural network weights are trained through variants of stochastic gradient descent. An alternative approach comes from the field of neuroevolution, which harnesses evolutionary algorithms to optimize neural networks, inspired by the fact that natural brains themselves are the products of an evolutionary process. Neuroevolution enables important capabilities that are typically unavailable to gradient-based approaches, including learning neural network building blocks (for example activation functions), hyperparameters, architectures and even the algorithms for learning themselves. Neuroevolution also differs from deep learning (and deep reinforcement learning) by maintaining a population of solutions during search, enabling extreme exploration and massive parallelization. Finally, because neuroevolution research has (until recently) developed largely in isolation from gradient-based neural network research, it has developed many unique and effective techniques that should be effective in other machine learning areas too. This Review looks at several key aspects of modern neuroevolution, including large-scale computing, the benefits of novelty and diversity, the power of indirect encoding, and the field’s contributions to meta-learning and architecture search. Our hope is to inspire renewed interest in the field as it meets the potential of the increasing computation available today, to highlight how many of its ideas can provide an exciting resource for inspiration and hybridization to the deep learning, deep reinforcement learning and machine learning communities, and to explain how neuroevolution could prove to be a critical tool in the long-term pursuit of artificial general intelligence. Deep neural networks have become very successful at certain machine learning tasks partly due to the widely adopted method of training called backpropagation. An alternative way to optimize neural networks is by using evolutionary algorithms, which, fuelled by the increase in computing power, offers a new range of capabilities and modes of learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lcdt完成签到,获得积分10
1秒前
Joy完成签到 ,获得积分10
1秒前
依然小爽完成签到 ,获得积分10
1秒前
大哥小钊狗完成签到,获得积分0
2秒前
2秒前
韦雪莲完成签到 ,获得积分10
3秒前
4秒前
5秒前
Ulrica完成签到,获得积分10
6秒前
科目三应助mengyuhuan采纳,获得30
6秒前
KK完成签到,获得积分10
6秒前
章良完成签到,获得积分10
6秒前
7秒前
nextconnie完成签到,获得积分10
7秒前
甜屁儿完成签到 ,获得积分10
7秒前
善学以致用应助李lll采纳,获得10
8秒前
阿尼完成签到 ,获得积分10
9秒前
9秒前
十七完成签到 ,获得积分10
9秒前
ouyekk完成签到,获得积分10
9秒前
稳如老狗完成签到,获得积分10
9秒前
小莫完成签到 ,获得积分10
9秒前
新手菜鸟发布了新的文献求助10
10秒前
twbsci发布了新的文献求助10
10秒前
222完成签到,获得积分10
10秒前
曾经青亦完成签到,获得积分10
11秒前
莫飞完成签到,获得积分10
11秒前
辛勤冷松完成签到 ,获得积分10
13秒前
Plusone发布了新的文献求助10
14秒前
CX330完成签到 ,获得积分10
15秒前
小米发布了新的文献求助10
16秒前
17秒前
赘婿应助鱼鱼宇采纳,获得10
17秒前
言诚开完成签到,获得积分20
18秒前
莽哥完成签到,获得积分10
18秒前
Hello应助ATL采纳,获得10
18秒前
tuanhust发布了新的文献求助10
20秒前
mengyuhuan完成签到,获得积分10
20秒前
Zhaowx完成签到,获得积分10
20秒前
你才是小哭包完成签到 ,获得积分10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347714
求助须知:如何正确求助?哪些是违规求助? 4481947
关于积分的说明 13948398
捐赠科研通 4380340
什么是DOI,文献DOI怎么找? 2406890
邀请新用户注册赠送积分活动 1399483
关于科研通互助平台的介绍 1372671