计算机科学
解码
人工智能
机器翻译
序列(生物学)
代表(政治)
特征(语言学)
编码器
自然语言处理
语言模型
短语
语音识别
解码方法
翻译(生物学)
人工神经网络
循环神经网络
算法
政治学
语言学
遗传学
法学
化学
生物化学
哲学
操作系统
信使核糖核酸
基因
政治
生物
作者
Kyunghyun Cho,Bart van Merriënboer,Çaǧlar Gülçehre,Dzmitry Bahdanau,Fethi Bougares,Holger Schwenk,Yoshua Bengio
出处
期刊:Cornell University - arXiv
日期:2014-01-01
被引量:5159
标识
DOI:10.48550/arxiv.1406.1078
摘要
In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.
科研通智能强力驱动
Strongly Powered by AbleSci AI