Deep echo state networks with uncertainty quantification for spatio‐temporal forecasting

计算机科学 不确定度量化 贝叶斯概率 回声状态网络 高斯过程 非线性系统 集合预报 数据同化 人工智能 数据挖掘 高斯分布 人工神经网络 机器学习 循环神经网络 物理 量子力学 气象学
作者
Patrick L. McDermott,Christopher K. Wikle
出处
期刊:Environmetrics [Wiley]
卷期号:30 (3) 被引量:56
标识
DOI:10.1002/env.2553
摘要

Abstract Long‐lead forecasting for spatio‐temporal systems can entail complex nonlinear dynamics that are difficult to specify a priori. Current statistical methodologies for modeling these processes are often highly parameterized and, thus, challenging to implement from a computational perspective. One potential parsimonious solution to this problem is a method from the dynamical systems and engineering literature referred to as an echo state network (ESN). ESN models use reservoir computing to efficiently compute recurrent neural network forecasts. Moreover, multilevel (deep) hierarchical models have recently been shown to be successful at predicting high‐dimensional complex nonlinear processes, particularly those with multiple spatial and temporal scales of variability (such as those we often find in spatio‐temporal environmental data). Here, we introduce a deep ensemble ESN (D‐EESN) model. Despite the incorporation of a deep structure, the presented model is computationally efficient. We present two versions of this model for spatio‐temporal processes that produce forecasts and associated measures of uncertainty. The first approach utilizes a bootstrap ensemble framework, and the second is developed within a hierarchical Bayesian framework (BD‐EESN). This more general hierarchical Bayesian framework naturally accommodates non‐Gaussian data types and multiple levels of uncertainties. The methodology is first applied to a data set simulated from a novel non‐Gaussian multiscale Lorenz‐96 dynamical system simulation model and, then, to a long‐lead United States (U.S.) soil moisture forecasting application. Across both applications, the proposed methodology improves upon existing methods in terms of both forecast accuracy and quantifying uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ffu完成签到 ,获得积分10
刚刚
天天快乐应助好的采纳,获得10
刚刚
刚刚
香蕉觅云应助科研小白花采纳,获得10
刚刚
18746005898发布了新的文献求助10
1秒前
科研通AI5应助fanfan44390采纳,获得10
1秒前
1秒前
1秒前
小刺猬完成签到,获得积分10
1秒前
小庄发布了新的文献求助10
1秒前
唐人雄发布了新的文献求助10
2秒前
英姑应助Khr1stINK采纳,获得10
2秒前
爆米花应助甜筒采纳,获得10
2秒前
Gang完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
3秒前
Hello应助潇洒的青采纳,获得10
3秒前
3秒前
共享精神应助长孙归尘采纳,获得10
3秒前
4秒前
Evan123发布了新的文献求助10
4秒前
5秒前
xctdyl1992发布了新的文献求助10
5秒前
5秒前
Su完成签到,获得积分10
5秒前
俗丨完成签到,获得积分10
6秒前
科研通AI5应助海底落日采纳,获得30
6秒前
6秒前
CodeCraft应助纯真忆安采纳,获得10
6秒前
顺顺发布了新的文献求助10
6秒前
6秒前
7秒前
nan完成签到,获得积分10
7秒前
7秒前
自信的叫兽完成签到,获得积分10
7秒前
淡然老太完成签到,获得积分10
8秒前
8秒前
哟哟哟完成签到,获得积分10
9秒前
思源应助背后的机器猫采纳,获得10
9秒前
惠惠发布了新的文献求助10
9秒前
AFEUWOS01完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794