异步通信
强化学习
计算机科学
异步学习
人工神经网络
任务(项目管理)
领域(数学分析)
人工智能
深度学习
多样性(控制论)
随机梯度下降算法
梯度下降
工程类
计算机网络
同步学习
教学方法
合作学习
数学分析
数学
系统工程
政治学
法学
作者
Volodymyr Mnih,Adrià Puigdomènech Badia,Mehdi Mirza,Alex Graves,Tim Harley,Timothy Lillicrap,David Silver,Koray Kavukcuoglu
出处
期刊:Cornell University - arXiv
日期:2016-01-01
被引量:5556
标识
DOI:10.48550/arxiv.1602.01783
摘要
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
科研通智能强力驱动
Strongly Powered by AbleSci AI