Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks

医学 食管癌 癌症 卷积神经网络 深度学习 放射科 内科学 人工智能 计算机科学
作者
Yoshimasa Horie,Toshiyuki Yoshio,Kazuharu Aoyama,Shoichi Yoshimizu,Yusuke Horiuchi,Akiyoshi Ishiyama,Toshiaki Hirasawa,Tomohiro Tsuchida,Tsuyoshi Ozawa,Soichiro Ishihara,Youichi Kumagai,Mitsuhiro Fujishiro,Iruru Maetani,Junko Fujisaki,Takeshi Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:89 (1): 25-32 被引量:376
标识
DOI:10.1016/j.gie.2018.07.037
摘要

Background and AimsThe prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma.MethodsWe retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy.ResultsThe CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%.ConclusionsThe constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future. The prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma. We retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy. The CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%. The constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助无心的青槐采纳,获得10
2秒前
3秒前
明亮寻绿发布了新的文献求助10
3秒前
4秒前
烟花应助友好的小虾米采纳,获得10
4秒前
5秒前
5秒前
辛桥完成签到,获得积分10
5秒前
1111发布了新的文献求助10
6秒前
领导范儿应助安详安寒采纳,获得10
6秒前
卜应完成签到,获得积分10
7秒前
7秒前
7秒前
飘着的鬼发布了新的文献求助50
8秒前
科研通AI2S应助舒适的以南采纳,获得10
8秒前
研友_VZG7GZ应助舒适的以南采纳,获得10
8秒前
9秒前
10秒前
天天快乐应助甜甜醉波采纳,获得10
10秒前
Jiayee发布了新的文献求助10
10秒前
yufanhui应助每天都要开心采纳,获得10
10秒前
FBQZDJG2122完成签到,获得积分10
11秒前
11秒前
jennyyu发布了新的文献求助10
11秒前
11秒前
WSND完成签到,获得积分10
11秒前
瓷穹完成签到,获得积分10
11秒前
木子乐妍完成签到,获得积分10
11秒前
12秒前
灵巧的yu完成签到,获得积分10
13秒前
周桅完成签到,获得积分10
14秒前
龙阔完成签到 ,获得积分10
14秒前
桐桐应助孤檠采纳,获得10
14秒前
云_123发布了新的文献求助10
14秒前
su完成签到 ,获得积分10
15秒前
在阳光下完成签到 ,获得积分10
15秒前
WSND发布了新的文献求助10
15秒前
meanz完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847