Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks

医学 食管癌 癌症 卷积神经网络 深度学习 放射科 内科学 人工智能 计算机科学
作者
Yoshimasa Horie,Toshiyuki Yoshio,Kazuharu Aoyama,Shoichi Yoshimizu,Yusuke Horiuchi,Akiyoshi Ishiyama,Toshiaki Hirasawa,Tomohiro Tsuchida,Tsuyoshi Ozawa,Soichiro Ishihara,Youichi Kumagai,Mitsuhiro Fujishiro,Iruru Maetani,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:89 (1): 25-32 被引量:401
标识
DOI:10.1016/j.gie.2018.07.037
摘要

Background and AimsThe prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma.MethodsWe retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy.ResultsThe CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%.ConclusionsThe constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future. The prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma. We retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy. The CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%. The constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ww发布了新的文献求助10
1秒前
幽默皮皮虾完成签到,获得积分10
1秒前
1秒前
guoyuheng发布了新的文献求助10
2秒前
yummybacon完成签到,获得积分10
2秒前
3秒前
无算浮白发布了新的文献求助10
3秒前
yule完成签到 ,获得积分10
4秒前
5秒前
毛豆应助12340055d采纳,获得10
5秒前
ZHH发布了新的文献求助10
5秒前
nanxing发布了新的文献求助30
6秒前
发发发布了新的文献求助10
6秒前
lin发布了新的文献求助10
6秒前
dx发布了新的文献求助10
7秒前
7秒前
11秒前
11秒前
假心话完成签到 ,获得积分10
11秒前
14秒前
14秒前
16秒前
周章兵发布了新的文献求助10
17秒前
凉白开发布了新的文献求助10
17秒前
20秒前
20秒前
瑾年发布了新的文献求助10
20秒前
21秒前
若有光发布了新的文献求助10
21秒前
光亮外套完成签到 ,获得积分10
24秒前
诚心的初露完成签到,获得积分10
25秒前
25秒前
赘婿应助dx采纳,获得10
26秒前
J.发布了新的文献求助50
27秒前
托丽莲睡拿完成签到,获得积分10
28秒前
iiiau完成签到,获得积分10
29秒前
所所应助Whisper采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728832
求助须知:如何正确求助?哪些是违规求助? 3273843
关于积分的说明 9983753
捐赠科研通 2989158
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747973