已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks

医学 食管癌 癌症 卷积神经网络 深度学习 放射科 内科学 人工智能 计算机科学
作者
Yoshimasa Horie,Toshiyuki Yoshio,Kazuharu Aoyama,Shoichi Yoshimizu,Yusuke Horiuchi,Akiyoshi Ishiyama,Toshiaki Hirasawa,Tomohiro Tsuchida,Tsuyoshi Ozawa,Soichiro Ishihara,Youichi Kumagai,Mitsuhiro Fujishiro,Iruru Maetani,Junko Fujisaki,Tomohiro Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:89 (1): 25-32 被引量:412
标识
DOI:10.1016/j.gie.2018.07.037
摘要

Background and AimsThe prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma.MethodsWe retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy.ResultsThe CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%.ConclusionsThe constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future. The prognosis of esophageal cancer is relatively poor. Patients are usually diagnosed at an advanced stage when it is often too late for effective treatment. Recently, artificial intelligence (AI) using deep learning has made remarkable progress in medicine. However, there are no reports on its application for diagnosing esophageal cancer. Here, we demonstrate the diagnostic ability of AI to detect esophageal cancer including squamous cell carcinoma and adenocarcinoma. We retrospectively collected 8428 training images of esophageal cancer from 384 patients at the Cancer Institute Hospital, Japan. Using these, we developed deep learning through convolutional neural networks (CNNs). We also prepared 1118 test images for 47 patients with 49 esophageal cancers and 50 patients without esophageal cancer to evaluate the diagnostic accuracy. The CNN took 27 seconds to analyze 1118 test images and correctly detected esophageal cancer cases with a sensitivity of 98%. CNN could detect all 7 small cancer lesions less than 10 mm in size. Although the positive predictive value for each image was 40%, misdiagnosing shadows and normal structures led to a negative predictive value of 95%. The CNN could distinguish superficial esophageal cancer from advanced cancer with an accuracy of 98%. The constructed CNN system for detecting esophageal cancer can analyze stored endoscopic images in a short time with high sensitivity. However, more training would lead to higher diagnostic accuracy. This system can facilitate early detection in practice, leading to a better prognosis in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇元瑶完成签到,获得积分20
7秒前
8秒前
9秒前
踏实的老四完成签到,获得积分10
9秒前
10秒前
10秒前
pluto应助堃堃boom采纳,获得10
11秒前
nono发布了新的文献求助10
12秒前
王金农发布了新的文献求助10
15秒前
11发布了新的文献求助10
16秒前
陈年人少熬夜完成签到 ,获得积分10
17秒前
19秒前
22秒前
吕佩完成签到,获得积分10
22秒前
hhh完成签到 ,获得积分10
23秒前
甜甜若冰发布了新的文献求助10
25秒前
35秒前
37秒前
科研通AI2S应助47gongjiang采纳,获得10
38秒前
卷卷233611发布了新的文献求助10
40秒前
45秒前
哑巴和喇叭完成签到 ,获得积分10
49秒前
49秒前
50秒前
1234发布了新的文献求助10
50秒前
52秒前
AireenBeryl531应助yooga采纳,获得30
54秒前
头号玩家完成签到,获得积分10
55秒前
NF404发布了新的文献求助10
58秒前
whitesheep完成签到,获得积分10
58秒前
Swater完成签到 ,获得积分10
1分钟前
1分钟前
焱阳完成签到 ,获得积分10
1分钟前
1分钟前
焱阳关注了科研通微信公众号
1分钟前
搞怪莫茗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027