Effect of Micro-Dimples on Hydrodynamic Lubrication of Textured Sinusoidal Roughness Surfaces

酒窝 润滑 表面粗糙度 表面光洁度 材料科学 流体轴承 摩擦学 机械 流量(数学) 纹理(宇宙学) 复合材料 计算机科学 物理 图像(数学) 人工智能
作者
Jinghu Ji,Cai-Wei Guan,Yonghong Fu
出处
期刊:Chinese journal of mechanical engineering [Elsevier]
卷期号:31 (1) 被引量:16
标识
DOI:10.1186/s10033-018-0272-z
摘要

Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the basis of the average flow model, and however the influence of roughness on the film pressure distribution could not be precisely expressed. Therefore, in order to study the hydrodynamic lubrication of the rough textured surfaces, sinusoidal waves are employed to characterize untextured surfaces. A deterministic model for hydrodynamic lubrication of micro-dimple textured rough surfaces is developed to predict the distribution of hydrodynamic pressure. By supplementing with the JFO cavitation boundary, the load carrying capacity of the film produced by micro-dimples and roughness is obtained. And the geometric parameters of textured rough surface are optimized to obtain the maximum hydrodynamic lubrication by specifying an optimization goal of the load carrying capacity. The effect of roughness on the hydrodynamic pressure of surface texture is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples. It shows that the roughness ratio of surface may be as small as possible to suppress the effect of hydrodynamic lubrication. Additionally, there are the optimum values of the micro-dimple depth and area density to maximize the load carrying capacity for any given value of the roughness ratio. The proposed approach is capable of accurately reflects the influence of roughness on the hydrodynamic pressure, and developed a deterministic model to investigate the hydrodynamic lubrication of textured surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
1秒前
1秒前
3秒前
SUPERDOUBLE发布了新的文献求助10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Felice应助科研通管家采纳,获得30
5秒前
子车茗应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
子车茗应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Choi发布了新的文献求助20
7秒前
8秒前
史道夫给史道夫的求助进行了留言
8秒前
9秒前
黄浦江发布了新的文献求助10
9秒前
山河入怀发布了新的文献求助10
9秒前
BioRick完成签到,获得积分10
9秒前
徐矜发布了新的文献求助20
10秒前
甜蜜的翠柏完成签到,获得积分20
12秒前
12秒前
12秒前
小白发布了新的文献求助10
13秒前
14秒前
14秒前
Zz完成签到,获得积分10
15秒前
福尔摩云发布了新的文献求助30
16秒前
ZXL发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919