超分子化学
各向异性
材料科学
聚合物
执行机构
纳米纤维
共价键
超分子聚合物
人工肌肉
纳米技术
垂直的
化学物理
复合材料
结晶学
光学
化学
物理
计算机科学
晶体结构
人工智能
有机化学
数学
几何学
作者
Stacey M. Chin,Christopher V. Synatschke,Shuangping Liu,Rikkert J. Nap,Nicholas A. Sather,Qifeng Wang,Zaida Álvarez,Alexandra N. Edelbrock,Timmy Fyrner,Liam C. Palmer,Igal Szleifer,Mónica Olvera de la Cruz,Samuel I. Stupp
标识
DOI:10.1038/s41467-018-04800-w
摘要
Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI