计算机科学
人工智能
联营
预处理器
深度学习
时间序列
一般化
卷积神经网络
人工神经网络
语义学(计算机科学)
系列(地层学)
刮擦
机器学习
模式识别(心理学)
数据挖掘
基线(sea)
特征(语言学)
数学分析
哲学
地质学
古生物学
操作系统
海洋学
生物
语言学
程序设计语言
数学
作者
Zhiguang Wang,Weizhong Yan,Tim Oates
出处
期刊:Cornell University - arXiv
日期:2017-05-01
被引量:939
标识
DOI:10.1109/ijcnn.2017.7966039
摘要
We propose a simple but strong baseline for time series classification from scratch with deep neural networks. Our proposed baseline models are pure end-to-end without any heavy preprocessing on the raw data or feature crafting. The proposed Fully Convolutional Network (FCN) achieves premium performance to other state-of-the-art approaches and our exploration of the very deep neural networks with the ResNet structure is also competitive. The global average pooling in our convolutional model enables the exploitation of the Class Activation Map (CAM) to find out the contributing region in the raw data for the specific labels. Our models provides a simple choice for the real world application and a good starting point for the future research. An overall analysis is provided to discuss the generalization capability of our models, learned features, network structures and the classification semantics.
科研通智能强力驱动
Strongly Powered by AbleSci AI