粪碱杆菌
醛缩酶A
化学
双加氧酶
同四聚体
生物化学
酶
立体化学
蛋白质亚单位
生物
细菌
遗传学
基因
作者
Shuhei Tsujino,Chisato Uematsu,Hideo Dohra,Taketomo Fujiwara
摘要
Pyruvic oxime dioxygenase (POD), a key enzyme in heterotrophic nitrification, was purified from Alcaligenes faecalis, and the molecular and catalytic characteristics were reexamined. POD was purified as the homotetramer of the subunit whose molecular weight was 30,000. The deduced amino acid sequence of POD was homologous with a class II aldolase that has been regarded as the Zn(II)-dependent enzyme catalyzing aldol reactions. The recombinant protein showed weak POD activity, and was activated by reconstitution with Fe(II). Affinity and catalytic constants were estimated at 470 μM and 4.69 sec-1, respectively. The POD was inactivated by EDTA to remove bound divalent metal cations. A reconstitution experiment demonstrated that Fe(II), not Zn(II), is essential for POD activity and that Mn(II) could partially fulfill the function of Fe(II). A mutant POD with replacement of His183, corresponding to one of three Zn(II)-binding ligands in the class II aldolase, by Asn was purified as a homotetrameric protein but showed no catalytic activities. Those results suggest that the POD is homologous to class II aldolase having non-heme Fe(II) as a catalytic center instead of Zn(II). A possible mechanism of the POD reaction is discussed on the basis of that of a known Fe(II)-dependent dioxygenase.
科研通智能强力驱动
Strongly Powered by AbleSci AI