Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties

纳米线 材料科学 纳米技术 锂(药物) 场电子发射 五氧化二铁 制作 光电子学 电子 病理 替代医学 冶金 内分泌学 物理 医学 量子力学
作者
Teng Zhai,H. Liu,H. Li,Xue Fang,Ming‐Feng Liao,Logan Li,Hao Zhou,Yukiya Koide,Yoshio Bandô,Dmitri Golberg
出处
期刊:Science & Engineering Faculty
链接
摘要

Adv. Mater. 2010, 22, 2547–2552 2010 WILEY-VCH Verlag G One-dimensional nanostructures have attracted considerable attention due to their importance in basic scientific research and potential technologic applications. Among them, vanadium pentoxide (V2O5) nanowires have been extensively studied in recent years because of their prospective applications in chemical sensors, field-emitters, catalysts, lithium-ion batteries, actuators, and electrochromic or other nanodevices. Several different approaches have been explored for the synthesis of V2O5 nanowires, such as thermal evaporation methods, hydrothermal/solvothermal syntheses, sol–gel techniques, and electrodeposition. However, the nanowires synthesized by these methods have typical lengths in the micrometer range (most of them are shorter than 10mm);moreover, if one canmake centimeter-long V2O5 nanowires, which should be much more useful compared to short wires for some specific purposes, such as field-emission (FE), device interconnects, and reinforcing fibers in composites. Herein, we fabricated high-quality single-crystalline centimeter-long V2O5 nanowires ( 80–120 nm in diameter, several centimeters in length; aspect ratio >10–10) using an environmental friendly hydrothermal approach without dangerous reagents, harmful solvents, and surfactants. The FE, electrochemical and electrical transport, and photoconductive properties of the synthesized V2O5 nanowires were then investigated in detail. Our results suggest a high potential of utilizing these novel nanowires in field-emitters, lithium-ion batteries, interconnects, and optoelectronic devices. The representative morphologies of the V2O5 nanowires were investigated by FE scanning electron microscopy (SEM), as shown in Figure 1a. Other SEM images (see the Supporting Information, Fig. S1) also confirm the high-yield fabrication of smooth and straight nanowires of 80–120 nm in diameter. Large portions of the nanowires are usually several millimeters or even up to several centimeters in length (inset of Fig. 1a), resulting in an aspect ratio of 10–10. To the best of our knowledge, this is the first time that such ultra-long V2O5 nanowires have been obtained. An X-ray diffraction (XRD) pattern of the sample is shown in Figure 1b. All the diffraction peaks can be indexed to an orthorhombic V2O5 phase with the lattice parameters of a1⁄4 11.54 A, b1⁄4 3.571 A, and c1⁄4 4.383 A, in good agreement with the literature values (Joint Committee on Powder Diffraction Standards (JCPDS) Card, no. 89-0612). No characteristic peaks of any impurities are detected in this pattern. Figure S2 (Supplementary Information) depicts a room temperature micro-Raman spectrum of the ultralong V2O5 nanowires. The peaks, located at 145, 197, 285, 305, 407, 480, 525, 694, and 990 cm , can be assigned to the Raman signature of V2O5. [18,19] A predominant low-wavelength peak at 145 cm 1 is attributed to the skeleton bent vibration (B3g mode), while the peaks at 197 and 285 cm 1 derive from the bending vibrations of OC V OB bond (Ag and B2g modes). The bending vibration of V OC (Ag mode), the bending vibration of V OB V bond (Ag mode), the stretching vibration of V OB V bond (Ag mode), and the stretching vibration of V OC bond (B2g mode) are regarded at about 305, 407, 525, and 694 cm , respectively. The layered structure of V2O5 is stacked up from distorted trigonal bipyramidal atoms that share edges to form (V2O4)n zigzag double chains along the [001] direction and are cross-linked along the [100] direction through the shared corners. The mode of a skeleton bent, corresponding to the peak at 145 cm , provides an evidence for the layered structure of V2O5. Furthermore, the narrow peak centered at 990 cm , corresponding to the stretching of vanadium atoms connected to oxygen atoms through double bonds (V1⁄4O), is also an additional clue to the layer-type structure of V2O5. [22,23] The detailed microstructures of V2O5 nanowires were further studied by transmission electron microscopy (TEM). Figure 2a shows a TEM image of V2O5 nanowires, which demonstrates that the V2O5 nanowires have uniform diameters throughout their entire lengths. An X-ray energy-dispersive spectrum (EDS) acquired from an individual nanowire exhibits strong V and O peaks. The atomic ratio of V and O is close to the 2:5

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小学生发布了新的文献求助10
刚刚
深情安青应助lll采纳,获得10
1秒前
调研昵称发布了新的文献求助10
2秒前
黙宇循光发布了新的文献求助10
4秒前
112发布了新的文献求助10
5秒前
充电宝应助xx采纳,获得10
6秒前
葡萄成熟应助PWG采纳,获得10
7秒前
LeiX发布了新的文献求助10
8秒前
8秒前
8秒前
fy完成签到,获得积分10
8秒前
orixero应助成成采纳,获得10
8秒前
8秒前
9秒前
hushan53发布了新的文献求助10
9秒前
聪仔发布了新的文献求助10
10秒前
yyw发布了新的文献求助100
11秒前
科研通AI2S应助草木采纳,获得10
11秒前
11秒前
WXY发布了新的文献求助10
12秒前
lu完成签到,获得积分10
13秒前
whisper应助wang采纳,获得10
14秒前
李理发布了新的文献求助10
14秒前
lll发布了新的文献求助10
15秒前
大个应助嘻嘻采纳,获得10
15秒前
黄嘟嘟发布了新的文献求助10
15秒前
xiaoyao发布了新的文献求助10
15秒前
lalala发布了新的文献求助10
16秒前
whisper应助000采纳,获得10
19秒前
五档张诊人完成签到,获得积分10
20秒前
ethanxiang发布了新的文献求助20
20秒前
112完成签到,获得积分10
23秒前
orixero应助小张只爱姜云升采纳,获得10
24秒前
Dr.Jiang完成签到,获得积分10
24秒前
yyw关闭了yyw文献求助
25秒前
科研通AI2S应助草木采纳,获得10
25秒前
xiaoyao完成签到,获得积分10
25秒前
善学以致用应助卿卿采纳,获得10
27秒前
徐不言完成签到,获得积分10
28秒前
不会学习的小郭完成签到 ,获得积分10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244