Plants are sessile organisms exposed constantly to potential virulent microbes seeking for full pathogenesis in hosts. Different from animals employing both adaptive and innate immune systems, plants only rely on innate immunity to detect and fight against pathogen invasions. Plant innate immunity is proposed to be a two-tiered immune system including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In PTI, PAMPs, the elicitors derived from microbial pathogens, are perceived by cell surface-localized proteins, known as pattern recognition receptors (PRRs), including receptor-like kinases (RLKs) and receptor-like proteins (RLPs). As single-pass transmembrane proteins, RLKs and RLPs contain an extracellular domain (ECD) responsible for ligand binding. Recognitions of signal molecules by PRR-ECDs induce homo- or heterooligomerization of RLKs and RLPs to trigger corresponding intracellular immune responses. RLKs possess a cytoplasmic Ser/Thr kinase domain that is absent in RLPs, implying that protein phosphorylations underlie key mechanism in transducing immunity signalings and that RLPs unlikely mediate signal transduction independently, and recruitment of other patterns, such as RLKs, is required for the function of RLPs in plant immunity. Receptor-like cytoplasmic kinases, resembling RLK structures but lacking the ECD, act as immediate substrates of PRRs, modulating PRR activities and linking PRRs with downstream signaling mediators. In this chapter, we summarize recent discoveries illustrating the molecular machines of major components of PRR complexes in mediating pathogen perception and immunity activation in plants.