材料科学
超级电容器
能量密度
纳米技术
能量(信号处理)
合理设计
密度泛函理论
化学工程
电容
工程物理
电极
物理化学
计算化学
化学
工程类
统计
数学
作者
Jun Song Chen,Cao Guan,Yang Gui,Daniel John Blackwood
标识
DOI:10.1021/acsami.6b14746
摘要
We report a rationally designed two-step method to fabricate self-supported Ni3S2 nanosheet arrays. We first used 2-methylimidazole (2-MI), an organic molecule commonly served as organic linkers in metal–organic frameworks (MOFs), to synthesize an α-Ni(OH)2 nanosheet array as a precursor, followed by its hydrothermal sulfidization into Ni3S2. The resulting Ni3S2 nanosheet array demonstrated superior supercapacitance properties, with a very high capacitance of about 1,000 F g–1 being delivered at a high current density of 50 A g–1 for 20,000 charge–discharge cycles. This performance is unparalleled by other reported nickel sulfide-based supercapacitors and is also advantageous compared to other nickel-based materials such as NiO and Ni(OH)2. An asymmetric supercapacitor was then established, exhibiting a very stable capacitance of about 200 F g–1 at a high current density of 10 A g–1 for 10,000 cycles and a surprisingly high energy density of 202 W h kg–1. This value is comparable to that of the lithium-ion batteries, i.e., 180 W h kg–1. The potential of the material for practical applications was evaluated by building a quasi-solid-state asymmetric supercapacitor which showed good flexibility and power output, and two of these devices connected in series were able to power up 18 green light-emitting diodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI