计算机科学
人工智能
卷积神经网络
模式识别(心理学)
特征提取
特征(语言学)
深度学习
语音识别
机器学习
语言学
哲学
作者
Xiang Li,Dawei Song,Peng Zhang,Guangliang Yu,Yuexian Hou,Bin Hu
出处
期刊:Bioinformatics and Biomedicine
日期:2016-12-01
被引量:116
标识
DOI:10.1109/bibm.2016.7822545
摘要
Automatic emotion recognition based on multi-channel neurophysiological signals, as a challenging pattern recognition task, is becoming an important computer-aided method for emotional disorder diagnoses in neurology and psychiatry. Traditional approaches require designing and extracting a range of features from single or multiple channel signals based on extensive domain knowledge. This may be an obstacle for non-domain experts. Moreover, traditional feature fusion method can not fully utilize correlation information between different channels. In this paper, we propose a preprocessing method that encapsulates the multi-channel neurophysiological signals into grid-like frames through wavelet and scalogram transform. We further design a hybrid deep learning model that combines the ‘Convolutional Neural Network (CNN)’ and ‘Recurrent Neural Network (RNN)’, for extracting task-related features, mining inter-channel correlation and incorporating contextual information from those frames. Experiments are carried out, in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Our results demonstrate the effectiveness of the proposed methods, with respect to the emotional dimensions of Valence and Arousal.
科研通智能强力驱动
Strongly Powered by AbleSci AI