A Novel Degraded Document Binarization Model through Vision Transformer Network

计算机科学 解码方法 人工智能 编码(内存) 变压器 卷积神经网络 模式识别(心理学) 特征(语言学) 参数化复杂度 特征提取 算法 电压 语言学 量子力学 物理 哲学
作者
Mingming Yang,Zongfang Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 159-173 被引量:4
标识
DOI:10.1016/j.inffus.2022.12.011
摘要

Degraded document binarization has received keen attention due to its vital influence on subsequent document analysis tasks. In this study, we propose a novel Degraded Document Binarization model through the vision transFormer framework, termed D2BFormer. Thanks to its end-to-end trainable fashion, the D2BFormer model is able to autonomously optimize its parameterized configuration of the entire learning pipeline without incurring the intensity-to-binary value conversion phase, resulting in an improved binarization quality. In addition, we propose a novel dual-branched encoding feature fusion module, which combines architectural components from the vision transformer framework and deep convolutional neural networks. The resulting encoding module can extract features from an input document that are sensitive to both global and local characteristics. Meanwhile, the proposed encoding feature extraction module can operate internally at a much lower spatial resolution than that of a raw input document, leading to reduced computational complexity. Furthermore, we propose a novel progressively merged decoding feature fusion module through carefully introduced skip connections both inside and outside the decoding network. The resulting decoding module progressively combines counterpart features derived from the corresponding layers of the encoding network with comparable spatial resolutions and up-sampled features generated from previous layers in the decoding network. Finally, the experiments conducted on ten public datasets demonstrate that the proposed D2BFormer model gains promising performance in terms of four metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
natsu发布了新的文献求助10
刚刚
浪子王三少完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
英姑应助Jyouang采纳,获得10
1秒前
2秒前
tina3058发布了新的文献求助10
5秒前
磁带机发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
verbal2005发布了新的文献求助10
7秒前
8秒前
祁媛媛关注了科研通微信公众号
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
六六七七完成签到,获得积分10
9秒前
9秒前
科目三应助咻咻采纳,获得10
9秒前
zh发布了新的文献求助10
9秒前
10秒前
11秒前
杰杰发布了新的文献求助10
12秒前
13秒前
14秒前
乖拉发布了新的文献求助10
16秒前
17秒前
晓晓发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
DTL哈哈完成签到 ,获得积分10
21秒前
21秒前
科研通AI5应助zzhhhzz采纳,获得10
22秒前
tina3058完成签到,获得积分10
23秒前
舟舟完成签到,获得积分10
23秒前
24秒前
认真的机器猫完成签到,获得积分10
24秒前
26秒前
杜若飞发布了新的文献求助10
26秒前
赵小胖完成签到,获得积分10
27秒前
28秒前
黎周二完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018