Green innovation output in the supply chain network with environmental information disclosure: An empirical analysis of Chinese listed firms

业务 供应链 产业组织 凝聚力(化学) 可持续发展 实证研究 营销 政治学 认识论 哲学 有机化学 化学 法学
作者
Liukai Wang,Min Li,Weiqing Wang,Yu Gong,Yu Xiong
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:256: 108745-108745 被引量:75
标识
DOI:10.1016/j.ijpe.2022.108745
摘要

Supply chain networks affect the ability of firms to obtain resources, and to meet the requirements of sustainable development, firms further seek green innovation from supply chain networks. Based on this context, we construct a supply chain network system, explore the influence of supply chain network power and network cohesion on corporate green innovation output, and discuss the potential moderating effect of corporate environmental information disclosure. We use an empirical sample comprising 1048 A-share listed firms in China from 2012 to 2019 to construct a supply chain network for focal firms. We also develop the focal firms' environmental information disclosure index via the environmental information revealed in the firms' annual and corporate social responsibility reports. Negative binomial model regression is adopted to analyse how supply chain network structures affect green innovation output. Our results show that both the network power and cohesion of the supply chain network positively influence corporate green innovation output, but the interaction of network power and cohesion negatively affects corporate green innovation, which suggests that excessive green knowledge and information can overload focal firms and reduce the efficiency of knowledge and information search. Furthermore, the empirical results indicate that environmental information disclosure positively moderates the relationship between network power and green innovation output as well as that between network cohesion and green innovation output. By analysing the factors influencing corporate green innovation output from a network perspective, we provide new guidance for sustainable corporate development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
戏谑完成签到,获得积分10
刚刚
rrw完成签到,获得积分10
1秒前
NexusExplorer应助早早采纳,获得10
1秒前
2秒前
123456发布了新的文献求助10
2秒前
2秒前
TIAN完成签到,获得积分10
2秒前
完美世界应助123采纳,获得10
2秒前
一一发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
枕漱完成签到,获得积分10
3秒前
熊风发布了新的文献求助10
4秒前
浮游应助小可爱采纳,获得10
4秒前
年轻的夕阳完成签到,获得积分10
6秒前
614521完成签到,获得积分10
7秒前
屈昭阳发布了新的文献求助10
7秒前
充电宝应助111采纳,获得10
8秒前
fly完成签到,获得积分10
8秒前
9秒前
寒冷的迎梦完成签到,获得积分10
10秒前
chen完成签到,获得积分10
11秒前
13秒前
科研通AI5应助熊风采纳,获得10
13秒前
LYW完成签到,获得积分10
14秒前
科研狗完成签到,获得积分10
14秒前
dog发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
16秒前
Cheng完成签到 ,获得积分0
16秒前
LIU发布了新的文献求助10
17秒前
Hcr完成签到,获得积分10
17秒前
17秒前
充电宝应助纯真雁菱采纳,获得10
18秒前
英姑应助dog采纳,获得10
18秒前
19秒前
19秒前
棒棒羊完成签到,获得积分10
19秒前
mmm4完成签到 ,获得积分10
20秒前
搜索文献发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983