Green innovation output in the supply chain network with environmental information disclosure: An empirical analysis of Chinese listed firms

业务 供应链 产业组织 凝聚力(化学) 可持续发展 实证研究 构造(python库) 营销 计算机科学 政治学 认识论 哲学 有机化学 化学 程序设计语言 法学
作者
Liukai Wang,Min Li,Weiqing Wang,Yu Gong,Yu Xiong
出处
期刊:International Journal of Production Economics [Elsevier]
卷期号:256: 108745-108745 被引量:35
标识
DOI:10.1016/j.ijpe.2022.108745
摘要

Supply chain networks affect the ability of firms to obtain resources, and to meet the requirements of sustainable development, firms further seek green innovation from supply chain networks. Based on this context, we construct a supply chain network system, explore the influence of supply chain network power and network cohesion on corporate green innovation output, and discuss the potential moderating effect of corporate environmental information disclosure. We use an empirical sample comprising 1048 A-share listed firms in China from 2012 to 2019 to construct a supply chain network for focal firms. We also develop the focal firms' environmental information disclosure index via the environmental information revealed in the firms' annual and corporate social responsibility reports. Negative binomial model regression is adopted to analyse how supply chain network structures affect green innovation output. Our results show that both the network power and cohesion of the supply chain network positively influence corporate green innovation output, but the interaction of network power and cohesion negatively affects corporate green innovation, which suggests that excessive green knowledge and information can overload focal firms and reduce the efficiency of knowledge and information search. Furthermore, the empirical results indicate that environmental information disclosure positively moderates the relationship between network power and green innovation output as well as that between network cohesion and green innovation output. By analysing the factors influencing corporate green innovation output from a network perspective, we provide new guidance for sustainable corporate development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI2S应助Zhong采纳,获得10
1秒前
yidashi完成签到,获得积分10
1秒前
Kelvin.Tsi完成签到 ,获得积分10
1秒前
Island发布了新的文献求助10
2秒前
hu970发布了新的文献求助10
2秒前
九九发布了新的文献求助10
2秒前
123456完成签到,获得积分10
2秒前
BareBear应助龙妍琳采纳,获得10
2秒前
赘婿应助wary采纳,获得10
3秒前
小蘑菇应助wary采纳,获得10
3秒前
上官若男应助wary采纳,获得10
3秒前
李爱国应助木子采纳,获得10
3秒前
烟花应助马佳凯采纳,获得10
3秒前
3秒前
LYL完成签到,获得积分10
4秒前
4秒前
得意凡人完成签到,获得积分10
4秒前
4秒前
害怕的擎宇完成签到,获得积分10
5秒前
柳絮完成签到,获得积分20
5秒前
6秒前
赫连烙发布了新的文献求助10
6秒前
目遇给目遇的求助进行了留言
7秒前
Arnold发布了新的文献求助10
8秒前
在九月完成签到 ,获得积分10
8秒前
selfevidbet发布了新的文献求助30
8秒前
通~发布了新的文献求助10
8秒前
靓仔完成签到,获得积分10
8秒前
妙手回春板蓝根完成签到,获得积分10
8秒前
9秒前
11完成签到,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
777完成签到,获得积分10
11秒前
junzilan发布了新的文献求助10
11秒前
11秒前
sun应助leave采纳,获得20
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762