波束赋形
成像体模
自适应波束形成器
图像分辨率
三维超声
栏(排版)
信号(编程语言)
计算机科学
超声波
分辨率(逻辑)
深度学习
材料科学
生物医学工程
人工智能
声学
光学
物理
电信
工程类
帧(网络)
程序设计语言
作者
Jihun Kim,Zhijie Dong,Matthew R. Lowerison,Nathiya Vaithiyalingam Chandra Sekaran,Qi You,Daniel A. Llano,Pengfei Song
标识
DOI:10.1109/ius54386.2022.9958375
摘要
We report 3D ULM imaging by using a 2D row-column addressing (RCA) array which achieves fast imaging volume rate. Furthermore, we propose a deep-learning (DL)-based adaptive beamforming method to improve the spatial resolution and contrast of the microbubble (MB) signal imaged by the RCA array. We evaluated the proposed technique on a wire phantom and MBs suspended in water. Moreover, we carried out an in vivo study on a mouse brain and demonstrated improved 3D ULM imaging based on the DL-beamformer. These results demonstrate that DL-based beamforming provides a viable solution for enhancing the RCA imaging quality for robust ULM.
科研通智能强力驱动
Strongly Powered by AbleSci AI