Molecular dynamics study of tensile properties of graphene/GaN heterostructures

石墨烯 材料科学 异质结 微电子 模数 分子动力学 复合材料 氮化镓 纳米技术 图层(电子) 光电子学 计算化学 化学
作者
Dongjing Liu,Jingjie Zhu,Fu Zhou,Guoqi Zhang,Daoguo Yang
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2390 (1): 012033-012033
标识
DOI:10.1088/1742-6596/2390/1/012033
摘要

Abstract Graphene/GaN nanocomposites have been widely used in high-power and high-frequency optoelectronic devices. At present, the thermal transport characteristics of graphene/gallium nitride heterostructures have been investigated by many scholars, but their mechanical properties have not been systematically studied. In this paper, the effects of graphene layer number, temperature and interfacial structure on the mechanical properties of graphene/GaN heterostructures were investigated by molecular dynamics method. The mechanical properties of materials were analyzed by failure stress, failure strain and Young’s modulus. The simulation results show that the heterogeneous structure is very sensitive to temperature. When the temperature is set at 2000K, the Young’s modulus of the heterostructure decreases by 25.11% compared with that at 300K, which indicates that the increase of temperature will reduce the mechanical properties of graphene composites, However, when the number of graphene layers increases, the mechanical properties of the heterostructures also improved. With the number of graphene layers is set from 1 layer to 5 layers, the performance of the heterostructure is improved, and its Young’s modulus increases by 48.46%. In addition, the effect of interface structure on the young’s modulus of the heterostructure structure is not obvious, but it will affect the maximum failure stress and maximum failure strain of the material. The mechanical properties of graphene in cross section contact with gallium atom are better than those of nitrogen atom. It is beneficial to improve the reliability of microelectronic devices to control and design heterogeneous structures based on the research results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小海完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
aaaaaa发布了新的文献求助10
1秒前
彩彩发布了新的文献求助10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
Shirley应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得30
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
AURORA发布了新的文献求助10
3秒前
3秒前
henry完成签到,获得积分10
4秒前
烟花应助霸气的又琴采纳,获得10
5秒前
6秒前
摆不烂发布了新的文献求助10
8秒前
善学以致用应助blind采纳,获得10
8秒前
夏远航应助皖医梁朝伟采纳,获得60
10秒前
11秒前
CodeCraft应助aaaaaa采纳,获得10
11秒前
12秒前
木土完成签到 ,获得积分10
13秒前
彩彩完成签到,获得积分20
13秒前
调研昵称发布了新的文献求助10
14秒前
鲤鱼梦柳完成签到 ,获得积分10
15秒前
情怀应助likw23采纳,获得20
17秒前
贝壳发布了新的文献求助10
17秒前
fgfdgf完成签到,获得积分10
17秒前
在水一方应助勤奋冬寒采纳,获得10
20秒前
清爽灰狼完成签到,获得积分10
20秒前
Lucas应助王宇辉采纳,获得10
20秒前
22秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187