Self-Supervised Commonsense Knowledge Learning for Document-Level Relation Extraction

关系抽取 常识 关系(数据库) 自然语言处理 计算机科学 人工智能 情报检索 心理学 知识抽取 数据挖掘
作者
Rongzhen Li,Jiang Zhong,Zhongxuan Xue,Qizhu Dai,Xue Li
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4253909
摘要

Compared to sentence-level relation extraction, practical document-level relation extraction (DocRE) is a more challenging task for which multi-entity problems need to be resolved. It aims at extracting relationships between two entities over multiple sentences at once while taking into account significant cross-sentence features. Learning long-distance semantic relation representation across sentences in a document, however, is a widespread and difficult task. To address this problem, this paper proposes a self-supervised commonsense-enhanced DocRE method, called SCDRE, without external knowledge. First, we introduce self-supervised learning to represent commonsense knowledge of each entity in an entity pair based on the commonsense entailed text. Second, we convert the cross-sentence entity pairs into anonymous entity pairs with coreference commonsense replacement. Finally, we perform semantic relation representation learning on the anonymous entity pairs and automatically convert them into target entity pairs. We examined our model on three publicly accessible datasets, DocRED, DialogRE and MPDD, and the results show that it performs significantly better than strong baselines by 2.03% F1, and commonsense knowledge has an important contribution to the DocRE by the ablation experimental analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助王山而采纳,获得10
刚刚
等一只ya完成签到,获得积分10
刚刚
刚刚
华仔应助小曾采纳,获得10
1秒前
科研通AI5应助Liu采纳,获得10
1秒前
1秒前
等于零完成签到 ,获得积分10
2秒前
陌小千完成签到 ,获得积分10
2秒前
wt完成签到,获得积分10
3秒前
3秒前
Lucas应助木木采纳,获得10
4秒前
4秒前
Orange应助pierolahm采纳,获得10
4秒前
6秒前
xiaoleeyu发布了新的文献求助10
7秒前
7秒前
科研通AI5应助周周喝粥粥采纳,获得10
8秒前
SSY完成签到,获得积分10
8秒前
肖遥发布了新的文献求助10
9秒前
魔幻海豚发布了新的文献求助10
9秒前
misong完成签到,获得积分10
10秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
挖掘机应助科研通管家采纳,获得200
11秒前
搞怪书兰完成签到,获得积分10
11秒前
FashionBoy应助科研通管家采纳,获得30
11秒前
思源应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得30
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
fifteen应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
jie酱拌面应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得50
12秒前
blink_gmx完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546756
求助须知:如何正确求助?哪些是违规求助? 3977890
关于积分的说明 12317527
捐赠科研通 3646280
什么是DOI,文献DOI怎么找? 2008092
邀请新用户注册赠送积分活动 1043696
科研通“疑难数据库(出版商)”最低求助积分说明 932377