Self-Supervised Commonsense Knowledge Learning for Document-Level Relation Extraction

关系抽取 常识 关系(数据库) 自然语言处理 计算机科学 人工智能 情报检索 心理学 知识抽取 数据挖掘
作者
Rongzhen Li,Jiang Zhong,Zhongxuan Xue,Qizhu Dai,Xue Li
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4253909
摘要

Compared to sentence-level relation extraction, practical document-level relation extraction (DocRE) is a more challenging task for which multi-entity problems need to be resolved. It aims at extracting relationships between two entities over multiple sentences at once while taking into account significant cross-sentence features. Learning long-distance semantic relation representation across sentences in a document, however, is a widespread and difficult task. To address this problem, this paper proposes a self-supervised commonsense-enhanced DocRE method, called SCDRE, without external knowledge. First, we introduce self-supervised learning to represent commonsense knowledge of each entity in an entity pair based on the commonsense entailed text. Second, we convert the cross-sentence entity pairs into anonymous entity pairs with coreference commonsense replacement. Finally, we perform semantic relation representation learning on the anonymous entity pairs and automatically convert them into target entity pairs. We examined our model on three publicly accessible datasets, DocRED, DialogRE and MPDD, and the results show that it performs significantly better than strong baselines by 2.03% F1, and commonsense knowledge has an important contribution to the DocRE by the ablation experimental analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Earnestlee完成签到,获得积分10
刚刚
天天快乐应助PROTAC采纳,获得10
刚刚
zr完成签到,获得积分10
刚刚
1秒前
晓沫发布了新的文献求助10
1秒前
MWSURE完成签到,获得积分10
2秒前
3秒前
Akim应助cloverdown采纳,获得10
3秒前
zhan完成签到,获得积分10
3秒前
伶俐皮卡丘完成签到,获得积分10
4秒前
崔鹤然完成签到,获得积分10
4秒前
噫嘘玺完成签到,获得积分10
4秒前
gaohar完成签到,获得积分10
4秒前
乐意你发布了新的文献求助10
5秒前
天天快乐应助亚琳采纳,获得10
6秒前
sweat完成签到,获得积分10
6秒前
7秒前
源源源完成签到 ,获得积分10
8秒前
oleskarabach发布了新的文献求助10
8秒前
夜半发布了新的文献求助10
8秒前
哥哥完成签到,获得积分10
8秒前
Sean完成签到 ,获得积分10
9秒前
叮叮叮完成签到 ,获得积分10
9秒前
大白牛完成签到,获得积分10
9秒前
陈功完成签到,获得积分10
10秒前
成就绮琴完成签到 ,获得积分10
11秒前
deniroming完成签到,获得积分10
12秒前
CDX发布了新的文献求助10
12秒前
Crisp完成签到,获得积分10
12秒前
xzn1123应助默默飞珍采纳,获得10
13秒前
芥末奶半糖加冰完成签到,获得积分10
13秒前
Maestro_S完成签到,获得积分0
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
舒心莫言完成签到,获得积分10
14秒前
忧郁紫翠发布了新的文献求助30
14秒前
自然紫山完成签到,获得积分10
16秒前
16秒前
cp3xzh完成签到,获得积分10
16秒前
纯情的沛岚完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957219
求助须知:如何正确求助?哪些是违规求助? 3503261
关于积分的说明 11112080
捐赠科研通 3234372
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870817
科研通“疑难数据库(出版商)”最低求助积分说明 802330