Self-Supervised Commonsense Knowledge Learning for Document-Level Relation Extraction

关系抽取 常识 关系(数据库) 自然语言处理 计算机科学 人工智能 情报检索 心理学 知识抽取 数据挖掘
作者
Rongzhen Li,Jiang Zhong,Zhongxuan Xue,Qizhu Dai,Xue Li
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4253909
摘要

Compared to sentence-level relation extraction, practical document-level relation extraction (DocRE) is a more challenging task for which multi-entity problems need to be resolved. It aims at extracting relationships between two entities over multiple sentences at once while taking into account significant cross-sentence features. Learning long-distance semantic relation representation across sentences in a document, however, is a widespread and difficult task. To address this problem, this paper proposes a self-supervised commonsense-enhanced DocRE method, called SCDRE, without external knowledge. First, we introduce self-supervised learning to represent commonsense knowledge of each entity in an entity pair based on the commonsense entailed text. Second, we convert the cross-sentence entity pairs into anonymous entity pairs with coreference commonsense replacement. Finally, we perform semantic relation representation learning on the anonymous entity pairs and automatically convert them into target entity pairs. We examined our model on three publicly accessible datasets, DocRED, DialogRE and MPDD, and the results show that it performs significantly better than strong baselines by 2.03% F1, and commonsense knowledge has an important contribution to the DocRE by the ablation experimental analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
大胆十三应助科研通管家采纳,获得10
刚刚
小杭76应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
传奇3应助牧万万采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
panda发布了新的文献求助20
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Smar_zcl应助科研通管家采纳,获得50
1秒前
Smar_zcl应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
合适的毛豆完成签到,获得积分10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
认真的沉鱼完成签到,获得积分10
1秒前
风中冰香应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Jennifer应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
科目三应助MNing采纳,获得10
2秒前
党参发布了新的文献求助10
2秒前
zzx完成签到,获得积分10
2秒前
chenkui完成签到,获得积分10
2秒前
妍妍YRrrrrrrr完成签到,获得积分10
3秒前
Ding-Ding完成签到,获得积分10
3秒前
xsc完成签到,获得积分10
3秒前
3秒前
晓布衣完成签到,获得积分10
3秒前
大宝哥哥发布了新的文献求助10
3秒前
4秒前
chen发布了新的文献求助10
4秒前
asdfqwer发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439360
求助须知:如何正确求助?哪些是违规求助? 4550482
关于积分的说明 14224867
捐赠科研通 4471458
什么是DOI,文献DOI怎么找? 2450361
邀请新用户注册赠送积分活动 1441216
关于科研通互助平台的介绍 1417865